RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B. Tech II Year I Semester Regular & Supplementary Exams Nov – 2025 Subject Name: Probability and Complex Variables

Branch: ECE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

2.	An	swer one full question from each unit in Part-B. Each full questio	n carrie	es 10 m	arks
1		PART-A Define a random variable	2M	CO1	L1
1	a	For the continuous probability function $f(x) = Kx^2e^{-x}$ when $x > 0$.	2M	COI	LI
	b	Find K	∠1 V1	CO1	L1
			23.6	002	
	C	Define Variance of a random variable	2M	CO2	L2
	d	Write the properties of characteristic function.	2M	CO2	L3
	f	Define first order central moments for X and Y	2M	CO3	L2
		Define joint probability distribution function. State Cauchy Riemann equations in Cartesian form.	2M 2M	CO3	L4 L3
	g h	Define harmonic function	2M	CO4	L1
	i		2M	CO4	L1
		State Cauchy's residue theorem	2M		LI
	j	Find the residue of $f(z) = \frac{ze^z}{(z-1)(z-2)^2}$ at its pole.	21 VI	CO5	L1
		PART-B			
		UNIT-I			
2	a	Suppose three companies X, Y, Z produce T.V.'s. X produces twice			
		as many as Y while Y and Z produce the same number. It is known			
		that 2% of X, 2% of Y and 4% of Z are defective. All the T.V.'s	1014	COL	T 1 T 5
		produced are put into one shop and then one T.V. is chosen at	10M	CO1	L1,L5
		random. Suppose a T.V. chosen is defective, what is the probability			
		that this T.V. is produced by company Z?			
		OR			
3	a	Calculate the first four moments of the following distribution about the			
		mean:	103.5	001	
		x 1 2 3 4 5 6 7 8 9	10M	CO1	L5
		frequency 2 6 13 25 30 22 9 5 2			
		UNIT-II		'	
4	a	Find first A control moments for the following date			
		Find first 4 central moments for the following data X 1 2 3 4 5	53.4	GO2	т 1
			5M	CO2	L1
		f 2 3 5 4 1			
	b	The joint density of X and Y is given by			
		$(e^{-(x+y)}, 0 < x, y < \infty)$			- 4
		$f(x,y) = \begin{cases} e^{-(x+y)}, & 0 < x, y < \infty \\ & 0, & \text{Otherwise} \end{cases}$	5M	CO2	L1
		Find the density function of the random variable X/Y .			
	1	OR			
5	a	State and explain the properties of mean and variance?	5M	CO2	L2
	b	If $g(x,y)=be^{-x}\cos y 0 < x \le 2, \ 0 < y \le \pi/2$			
		=0 elsewhere is a valid density function	5M	CO2	L2
		Evaluate b.			
		UNIT-III			
6	a	Define characteristic function and its properties.	5M	CO3	L3, L5

	b	The joint characteristic function of two random variables is given by			
		$\emptyset_{xy}(w_1, w_2) = \exp(-w_{12}, -4w_{22})$. Check whether X and Y	5M	CO3	L2
		uncorrelated or not.	01.1		
		OR			
7	a	Define Joint Gaussian distribution for Bivariate case	5M	CO3	L1
	b	Define Gaussian Random Variables and it's the properties.	5M	CO3	L3&L5
		UNIT-IV			
8	a	Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) Re f(z) ^2 = 2 f'(z) ^2$, where $f(z)$ is a	5M	CO4	L3
	1	analytic function			
	b	If $w(x,y) = \phi(x,y) + \psi(x,y)$ represents the complex potential for	5M	CO4	L3
		an electric field and $\phi = x^3 - 3xy^2$, determine the function ψ .			
		OR			
9	a	Show that $u = 2\log(x^2 + y^2)$ is harmonic and find its harmonic conjugate	5M	CO4	L1
	b	Find the analytic function $f(z) = u + iv$ given	63. f	GO 4	т 1
		$3u + 2v = y^2 - x^2 + 16x$	5M	CO4	L1
	ı	UNIT-V			
10	a	Evaluate $\int_{A(1,1)}^{B(2,8)} f(z) dz$ where $f(z)=x^2+ixy$ along i)the straight line	10) (COS	T 4
		AB ii) the curve c: $x=t$, $y=t^2$	10M	CO5	L4
		OR			
11	a	Find the Laurent series expansion of $f(z) = \frac{1}{z^2 - 5z + 5}$ for	5M	CO5	L1
		(i)1 < z < 3(ii)1 < z(iii)z < 3			
	b	Using the residue theorem, evaluate			
		$\int_{c} \frac{(\sin \pi z^{2} + \cos \pi z^{2})dz}{(z-1)^{2}(z-2)} \cdot C : z = 3.$	5M	CO5	L1

SET-1

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year I Semester Regular Examinations November 2025 Subject Name: Universal Human Values

Branch: ECE **Time: 3 Hours** Max. Marks: 70

Instructions:

Answer all 10 questions from Part-A. Each question carries two marks
 Answer one full question from each unit in Part-B. Each full question carries 10 marks

2.	. A	nswer one full question from each unit in Part-B. Each full question carries 10 marks			
	T	PART-A	0).(G01	T 4
1	a	Why is happiness considered more important than prosperity?	2M	CO1	
	b	Define value education and its importance in understanding a fulfilling life.	2M	CO1	_
	c	What are the primary differences between the needs of the self and the body?	2M	CO2	
	d	Define the term "Enjoyer" in the context of the Self.	2M	CO2	
	e	Explain the term "natural acceptance."	2M	CO3	L3
	f	Explain what is meant by "affection" in a family setting.	2M	CO3	L3
	g	Why is harmony in nature important for sustaining life on Earth?	2M	CO4	L1
	h	How do animals contribute to the Plant/Bio Order?	2M	CO4	L2
	i	What does a holistic understanding of ethics mean in a professional context?	2M	CO5	_
	i	Give an example of ethical conduct in everyday life.	2M	CO6	
	J	PART-B	2111		
		UNIT-I			
2	a	Why is value education important for the development of individuals and			
_	a		5M	CO1	L1
	1.	society?	514	CO1	1.2
	b	How does human consciousness influence thoughts, actions, and behaviors?	5M	CO1	L2
2	T	OR			
3	a	Self-exploration involves a dialogue between 'what you are' and 'what	5M	CO1	L3
	1	you really want to be'. Explain this process with examples.		<u> </u>	
	b	Discuss the relationship between human consciousness and self-awareness in	5M	CO1	L6
		personal development.			
	_	UNIT-II			
4	A	Describe the interplay of imagination and natural acceptance in forming	5M	CO2	1.2
		desires and expectations.	3111		
	b	Why is it important to balance the needs of the body and the self for overall	5M	CO2	Ι 4
		health and happiness?	JIVI	CO2	LT
		OR			
5	a	Discuss how imagination can be used as a tool for problem-solving and personal	5M	CO2	16
		growth.	JIVI	CO2	Lo
	b	Explain the relationship between preconditioning and continuity of	5M	CO2	L2
		happiness in human life.	JIVI		LZ
		UNIT-III			
6	a	Explain how the concept of justice contributes to harmony in the family.	5M	CO3	L2
	b	Why is self-respect important, and how does it impact one's relationships with	514	CO2	т 1
		others?	5M	CO3	L1
		OR			
7	a	Discuss how natural acceptance promotes harmony in society.	5M	CO3	L4
	Ъ	Discuss the importance of communication in maintaining harmony within			
		families and communities.	5M	CO3	L6
	1	UNIT-IV			
8	a	Explain the significance of "Conformance" (Anu-sangita) in the context of each			
O	"	of the four orders.	5M	CO4	L4
	b	Describe the holistic perception of harmony in existence and why is it essential			
	0	for the well-being of both humans and the environment?	5M	CO4	L3
		-		<u> </u>	
0	T	OR			
9	a	Describe the mutual fulfillment among the four orders of nature. How do the	5M	CO4	L3
	1	needs of one order contribute to the well-being of another?		<u> </u>	
	b	Explain the concept of "growth" in the plant/pranic order compared to the	5M	CO4	L2
		material order.		_	
		UNIT-V			
10	a	How does the concept of Right Understanding contribute to ethical human	5M	CO5	L_2
		conduct?			
	b	How does ethical conduct affect personal integrity and social trust?	5M	CO5	L4
		OR			
11	a	Discuss the importance of mutual fulfillment in relationships at the	5M	CO6	12
		family level according to the holistic understanding.	J1VI	200	
	b	Discuss the importance of ethics, empathy, and shared values in creating a	5M	CO6	16
		Universal Human Order.	JIVI	CO0	LU
					_

CODE: A14301T		R23		H.T.No:										
----------------------	--	-----	--	---------	--	--	--	--	--	--	--	--	--	--

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year I Semester Regular Examinations November 2025 Subject Name: SIGNALS, SYSTEMS AND STOCHASTIC PROCESSES BRANCH: ECE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

	<u> </u>	PART-A	ion can	100 10 1						
1	a	Define correlation of two signals.	2M	CO1	BTL1					
	b	Write Dirichlet conditions for Fourier series	2M	CO1	BTL1					
	С	Describe the bilateral and unilateral Laplace transforms.	2M	CO2	BTL2					
	d	Write the modulation property of Fourier Transform.	2M	CO2	BTL2					
	e	Give the relationship between Bandwidth and Rise time.	2M	CO3	BTL2					
	f	Define system bandwidth.	2M	CO3	BTL1					
	g	Define wide sense stationary (WSS) random process?	2M	CO4	BTL2					
	h	Define Time average and Ergodicity?	2M	CO4	BTL1					
	i	Write the relation between input and output PSD of LTI system	2M	CO5	BTL1					
	j	Find $S_{yy}(\omega)$ given $S_{xx}(\omega) = \frac{16}{\omega^2 + 4}$ and $H(\omega) = \frac{1}{2 + j\omega}$	2M	CO5	BTL2					
	PART-B									
		UNIT-I								
2	a	Define mean square error and derive the expression for evaluating mean square error.	5M	CO1	BTL3					
	b	Obtain the trigonometric Fourier series for full wave rectified sine wave?	5M	CO1	BTL3					
		OR								
3	a	Explain the various operations on signals?	5M	CO1	BTL4					
	b	Determine whether the following function is periodic or not. If so, find the period. $x(t)=6\sin 100 \Box t + 5\cos 150t$.	5M	CO1	BTL3					
		UNIT-II								
4	a	Find the F.T of the following signals i. $e^{5t} u(t)$ ii. $e^{-3t} \sin 4t \ u(t)$.	5M	CO2	BTL3					
	b	Explain the importance of Sampling theorem in Communication	5M	CO2	BTL3					
	·	OR								
5	a	Find Inverse Laplace Transform of $X(s) = \frac{5s+3}{s(s^2+4s+13)}$ Re(s) > 0.	5M	CO2	BTL4					
	b	State and prove Convolution and Differentiation Properties of L.T?	5M	CO2	BTL3					
		UNIT-III								
6	a	Derive the Magnitude and Phase conditions of a System for Distortion-less transmission	5M	СОЗ	BTL3					

	b	Explain the ideal characteristics of LPF, HPF, BPF and BSF using their Magnitude and Phase responses.	5M	СОЗ	BTL3
	•	OR			
7	a	Explain the Characteristics of an ideal LPF and Explain why it cannot be realized.	5M	СОЗ	BTL3
	b	What is Causality and Paley-Wiener criterion for physical realization? What is the significance of these? Explain.	5M	СОЗ	BTL2
		UNIT-IV			
8	a	Prove that the random process $x(t) = \cos(\omega_l t + \theta)$ in ω_{ss} if is assumed that ω_l is a constant and θ is uniformly distributed variable in the interval $(0,2\pi)$.	5M	CO4	BTL3
	b	Briefly explain the concept of random process and categorize its classifications with examples.	5M	CO4	BTL4
		OR			
9	a	Discuss in detail about: (i) First order stationary random process. (ii) Second order & Wide - Sense Stationary Random Process	5M	CO4	BTL3
	b	List and explain the properties of Autocorrelation.	5M	CO4	BTL3
		UNIT-V		T	
10	a	State properties of cross-power density spectrum of a random process.	5M	CO5	BTL3
	b	Find cross correlation function corresponding to the cross-power spectrum $s_{xy}(\omega) = \frac{6}{(9+\omega^2)(3+j\omega)^2}$	5M	CO5	BTL3
		OR			
11	a	State and prove the expression relating power and auto correlation function of random process.	5M	CO5	BTL3
	b	A stationary random process x(t) with zero mean and auto correlation function $R_{xx}(\tau) = 3e^{-2 \tau }$ is applied to a system of transfer function $H(\omega) = \frac{1}{2+j\omega}$ Determine PSD of the response?	5M	CO5	BTL4

CODE: A14302T	R23	H.T.No:					
CODE: A143021	R23	H.T.No:					Ì

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year I Semester Regular Examinations November 2025

SUBJECT NAME: ELECTRONIC DEVICES AND CIRCUITS
Branch: ECE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

		PART-A			
1		Explain the differences between transition and diffusion capacitances			
	a	of a PN junction diode.	2M	CO1	BTL1
	b	What are clipping and clamping circuits.	2M	CO1	BTL1
	c	What is the early effect?	2M	CO2	BTL2
	d	What is thermal runaway? How it can be avoided?	2M	CO2	BTL1
	e	Define threshold voltage.	2M	CO3	BTL1
	f	What is meant by body effect?	2M	CO3	BTL1
	g	Draw the small signal model of BJT.	2M	CO4	BTL1
	h	Define pinch-off voltage in JFET.	2M	CO4	BTL2
	i	Distinguish between T-model and hybrid- π model for MOSFET.	2M	CO5	BTL1
	j	Define the transconductance of MOSFET.	2M	CO5	BTL1
		PART-B			
		UNIT-I		_	
2	a	Discuss about effect of temperature on PN junction diode.	5M	CO1	BTL2
	b	A 50 Hz transformer having 60 V_{rms} on each side of the centre tap supplies a full wave rectifier circuit. The circuit load is 210 Ω with a shunt capacitor filter of 1000 μ F. Find the ripple factor.	5M	CO1	BTL3
		OR			
3	a	Describe the operating principle of LED with a diagram and assess the advantages of photodiode over LED?	5M	CO1	BTL3
	b	Determine the concentration of holes and electrons in a p-type germanium at 3000K, if the conductivity is 150Ω -cm. Mobility of holes in germanium $\mu p = 1800 \text{ cm}^2/\text{V}\text{sec}$	5M	CO1	BTL2
		UNIT-II			
4	a	Draw and explain the input and output characteristics of a transistor in CC configuration.	5M	CO2	BTL2
	b	Justify why self-bias (voltage divider bias) is widely used in amplifiers			
		compared to fixed bias	5M	CO2	BTL2
		OR			
5	a	Design a fixed-bias CE amplifier circuit for a given VCC , β and desired IC .	5M	CO2	BTL4
	b	Derive the stability for the self-bias circuit using BJT.	5M	CO2	BTL4
	1	UNIT-III		1	
6	a	Derive the expression for transconductance (gm) starting from the exponential BJT I–V relation.	5M	СОЗ	BTL3

	1	E 1' 1 d MOCEPET d 1'C' 1 'd		ı	
	b	Explain how the MOSFET acts as an amplifier and switch.	5M	CO3	BTL2
		OR			
7	a	Compare the three transistor amplifiers CB, CC, CE in terms of Voltage gain, Current gain, input impedance and output impedance.	5M	СОЗ	BTL3
	b	Determine I_C , I_E and α for a transistor circuit having I_B =15 μ A and β =150.	5M	СОЗ	BTL2
	·	UNIT-IV			
8	a	Evaluate the advantages of FET over BJT in terms of input resistance and thermal stability	5M	CO4	BTL3
	b	Derive the expression for AI, AV, Ri and Ro for CE amplifier using h-parameter model.	5M	CO4	BTL2
		OR			
9	a	Explain the working of a depletion type MOSFET with its characteristics	5M	CO4	BTL2
	b	The transistor is connected as a C.E. amplifier with Rs = 1 K Ω , R1 = 50 K Ω , R2 = 2K Ω , R=1K Ω , R1=1.2K Ω , h _{ie} =1100 Ω , h _{re} =2.5x10 ⁻⁴ , h _{fe} =50, h _{oe} =25 μ A/V. Find the various gains and the input and output impedances using small signal analysis.	5M	CO4	BTL3
		UNIT-V			
10	a	The parameters for the transistor in the circuit shown in Figure below are $V_{TN}=0.6~V,~K_n=0.5~mA/V^2$, and $\lambda=0.$ (a) Determine the quiescent values of I_{DQ} and V_{DSQ} , (b) Find the small signal voltage gain.	10M	CO5	BTL4
		OR			
11	a	Evaluate the role of source resistance in stability and gain reduction of MOS amplifiers	5M	CO5	BTL2
	b	Construct the small-signal equivalent model of a MOSFET amplifier with un-bypassed source resistance and calculate input resistance.	5M	CO5	BTL2

CODE: A14303T		R23		H.T.No:					
ODD: A143031) (J	11.1.1.0.					

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year I Semester Regular Examinations November 2025 Subject Name: Digital Circuits Design

Time: 3 Hours Branch: ECE Max. Marks: 70

Instructions:

Answer all 10 questions from Part-A. Each question carries two marks
 Answer one full question from each unit in Part-B. Each full question carries 10 marks

2	2. A	nswer one full question from each unit in Part-B. Each full question carrie	es 10	marks	
1	1	PART-A			
1	a	Convert the signed decimal number -45 into its 8-bit 2's complement binary representation	2M	CO1	L1
	b	What is canonical form of Boolean functions?	2M	CO1	L1
	c	Compare PROM, PLA & PAL.	2M	CO2	L1
	d	What is a multiplexer?.	2M	CO2	L1
	e	Differentiate between structural and behavioral modeling in Verilog with one example for each	2M	CO3	L2
	f	Explain the difference between structural and behavioral modeling in Verilog.	2M	CO3	L1
	g	What is the modulus of a 4-bit ripple counter? Draw the state diagram	2M	CO4	L1
	h	Mention data types used in Verilog HDL.	2M	CO4	L1
	i	State two advantages of FPGAs over traditional logic circuits or other PLDs.	2M	CO5	L1
	j	What is the working principle of a sequence detector? PART-B	2M	CO5	L1
		UNIT-I			
2	a	State Duality theorem. List Boolean laws and their Duals.	5M	CO1	L3
2	b	Minimize the following function: $F(A,B,C,D,E) = \sum (0,2,4,6,9,13,21,23,25,29,31)$ using K-map	5M	CO1	L3
		OR			
3	a	Represent +35 and -35 in sign magnitude, sign 1's complement and sign 2's			
3	a	complement representation.	5M	CO1	L3
	ь	Realize XOR gate using minimum number of NAND gates	5M	CO1	L6
	10	UNIT-II	J1V1	COI	LO
4	a	Define an encoder. Design octal to binary encoder	5M	CO2	L6
•	b	With neat block diagram, explain BCD adder circuit.	5M	CO2	L6
	1 -	OR	01.12	002	20
5	a	Design a 32:1 Multiplexer using 4:1 Multiplexers.	5M	CO2	L6
•	b	Construct and explain Full adder using Two Half adders and one OR gate	5M	CO2	<u>L6</u>
		UNIT-III		1	
6	a	Explain the following "lexical conventions" with examples in Verilog. a) White space b) strengths c) Operators	5M	CO3	L5
	b	Develop a Verilog code for 2X1 Multiplexer using Behavioural modelling.	5M	CO3	L6
		OR			
7	a	Draw and explain in detail about VHDL design flow.	5M	CO3	L2
	ь	Develop a Verilog code for shift registers using structural modelling	5M	CO3	L5
		UNIT-IV		_	
8	a	Design a Mod-10 counter using RS flip-flops.	5M	CO4	L6
	b	Design a 3-bit counter using T flip flops and explain its operation	5M	CO4	L2
		OR			
9	a	Convert JK flip flop into SR flip flop.	5M	CO4	L2
	b	Explain the working of the following	5M	CO4	L3
		i) J-K flip-flop ii) S- R flip-flop iii) D flip-flop UNIT-V			
10	Α.		101/	COF	т 2
10	A	Design and implement Mod-10 Synchronous Up counter using T-FFs OR	10M	CO5	L3
11	a	Implement $f(A,B,C,D) = \sum m(0,1,3,5,6,8,9,11,12,13)$ using PAL.	5M	CO5	L6
	b	What is meant by finite state machine? What are the capabilities and limitations	5M	CO5	L2
		of finite state machine?	J111	233	