	~ 4
C: U	

CODE: A1HS407 **R23** H.T.No:

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year II Semester Regular Examinations May 2025 Subject Name: **DESIGN THINKING FOR INNOVATION**

Branch: CSE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

	2. P	nswer one full question from each unit in Part-B. Each full quest	ion carr	1es 10 i	narks
	_	PART-A		1	
1	а	Name two new-age materials used in modern product design.	2M	СО	L1
	b	What are the five stages of the Design Thinking process?	2M	CO	L1
	С	How does prototyping help improve design solutions?	2M	CO	L3
	d	How can design thinking encourage innovation in product development?	2M	СО	L2
	e	How can the value of creativity be evaluated in terms of product success?	2M	СО	L3
	f	How does innovation contribute to organizational growth?	2M	СО	L3
	g	How does innovation contribute to sustainable product design?	2M	СО	L2
	h	What are product specifications?	2M	CO	L1
	i	What is meant by a prototype in design thinking?	2M	CO	L1
	j	What is meant by reliability in the context of a startup product?	2M	СО	L2
		PART-B			
		UNIT-I			
2	а	Illustrate any three principles of design through practical applications in product or graphic design.	5M	CO1	L3
	b	Describe the characteristics of dot, line, shape, and form. Provide examples of how each is used in design.	5M	CO1	L3
		OR			
3	а	Discuss how the principles of design contribute to the effectiveness of a design composition.	5M	CO1	L4
	b	Discuss how the introduction of new materials has influenced product innovation and sustainability in industrial design.	5M	CO1	L4
		UNIT-II			
4	а	Explain the steps of the design thinking process— Empathize, Analyze, Ideate, and Prototype—with suitable examples.	5M	CO2	L3
	b	Analyze how the design thinking process has been used to drive a technological or product-based invention. Support your answer with a real-world example.	5M	CO2	L4
		OR		1	
5	а	Discuss how brainstorming sessions influence the quality and diversity of ideas in the ideation stage of design thinking.	5M	CO2	L4

	b	Define and explain the use of any two tools of design thinking. How do they contribute to effective problemsolving?	5M	CO2	L3
		UNIT-III			
6	а	Describe the process of transforming a creative idea into an innovative product or service. Provide an example to	5M	СОЗ	L3
		support your answer.			
	b	What are the characteristics of an effective innovation team? Explain how team collaboration contributes to successful innovation.	5M	CO3	L2
		OR			
7	а	Discuss how organizations can build a culture that supports both creativity and innovation.	5M	CO3	L5
	b	Analyze how creativity and innovation influence organizational success and competitive advantage. Support your answer with examples.	5M	соз	L4
		UNIT-IV			
8	а	What are the key stages of product planning? Explain how each stage supports the product development lifecycle.	5M	CO4	L3
	b	Describe any two types of product strategies. How do these strategies impact product development and market positioning?	5M	CO4	L4
		OR			
9	а	Analyze the factors that contribute to product value. How can a company enhance the perceived value of its product without increasing costs?	5M	CO4	L4
	b	Describe any two types of product strategies. How do these strategies impact product development and market positioning?	5M	CO4	L3
		UNIT-V			
10	а	Explain the importance of building and testing business cases in the context of startup growth and sustainability.	5M	CO5	L3
	b	Discuss any three principles of design thinking and explain how they help redefine traditional business models.	5M	CO5	L5
		OR			
11	а	How does design thinking aid in defining and testing business models for startups? Support your answer with an example.	5M	CO5	L3
	b	Evaluate the role of design thinking in dealing with change and unpredictability in fast-evolving industries.	5M	CO5	L6

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

SET-2

B.Tech II Year II Semester Regular Examinations May 2025

Subject Name: Managerial Economics and Financial Analysis Branch: CSE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

1	а	PART-A			
	l a			CO1	рті 1
	b	What is demand? Explain its functions?	2M	CO1	BTL1
		Explain types of elasticity of demand?	2M		BTL2 BTL2
	C	Explain the concept of least cost combination?	2M	CO2	
	d	What is the concept of Break-Even analysis?	2M	CO2	BTL1
	e	Explain about the Joint stock companies?	2M	CO3	
	f	What is monopoly? Explain its advantages?	2M	CO3	BTL1
	g	Define capital budgeting? Explain its characteristics?	2M	CO4	BTL1
	h	List and explain the components of working capital?	2M	CO4	BTL4
	i	What is ledger? Explain its characteristics?	2M		
	j	Explain about Balance sheet?	2M	CO5	BTL2
		PART-B			
		UNIT-I			
2	a	Define demand forecasting? Explain demand forecasting methods?	5M	CO1	BTL1
	b	Explain the functions of managerial economics?	5M	CO1	BTL2
		OR			
3	а	Explain nature and scope of managerial economics?	5M	CO1	BTL2
	b	Explain what are factors influencing demand?	5M	CO1	BTL2
		UNIT-II			
4	а	Solve the following problem, Fixed cost Rs 7500/-, sales Rs			
		40000/-, variable cost Rs 17500/ Calculate contribution,	5M	CO2	BTL6
		profit, BEP, Margin of safety.			
	b	Explain different types costs?	5M	CO2	BTL2
		OR			
5	a	Analyze different of Internal and External economics of scale?	5M	CO2	BTL4
	b	Explain the concept of Break-Even Analysis?	5M	CO2	BTL2
		UNIT-III			
6	a	What are the different types of Business Organization?	5M	CO3	BTL1
	b	What is market? Distinguish between perfect and imperfect markets?	5M	соз	BTL1
		OR	<u> </u>	1	
7	а	Explain pricing methods?	5M	CO3	BTL2
-	b	Define partnership? Explain its characteristics?	5M	CO3	BTL1
	~	UNIT-IV			
8	а	Explain the importance of working capital?	5M	CO4	BTL2
J	b	Define capital budgeting? Explain capital budgeting techniques?	5M	CO4	BTL1
		OR			

		A project required an		•			
		generating the cash flows over its life time. Cost of					
	b	of the project? What are factors influen	noing worlzing	conital in modern			
		business?	neing working	capital III IIIouciii	5M	CO4	BTL1
		basiliess.	UNIT-V				<u> </u>
10	а	Explain the Accounting p					
		I a garage	- I		5M	CO5	BTL2
	b	Explain the importance o	f ratio analysis	?	5M	CO5	BTL2
	•		OR				
11	a	The following trial balance	e have been tal	ken out from the			
		books of XYZ as on 31st	December, 201	7.			
		Closing stock is valued at	· ·	-			
		and profit and loss accou	nt of the busin	ess for the year			
		ended 31.12.2017					
		Particulars	Dr. (Rs.)	Cr. (Rs.)			
		Plant and Machinery	1,00,000	()			
		Opening stock	60,000				
		Purchases	1,60,000				
		Building	1,70,000				
		Carriage inward	3,400				
		Carriage outward	5,000				
		Wages	32,000				
		Sundry debtors	1,00,000				
		Salaries	24,000		10		
		Furniture	36,000		10 M	CO5	BTL4
		Trade expenses	12,000		101		
		Discount on sales	1,900				
		Advertisement	5,000				
		Bad debts	1,800				
		Drawings	10,000				
		Bills receivable	50,000				
		Insurance	4,400				
		Bank balances	20,000	4.00.000			
		Sales		4,80,000			
		Interest received		2,000			
		Sundry creditors		40,000			
		Bank loan		100,000			
		Discount on purchases		2,000			
		Capital		171,500			
			7,95,500	7,95,500			

CODE: A1CS404T	R23	H.T.No:								
----------------	-----	---------	--	--	--	--	--	--	--	--

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year II Semester Regular Examinations May 2025

Subject Name: OBJECT-ORIENTED PROGRAMMING THROUGH JAVA

Branch: CSE

Time: 3 Hours SET-1 Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

	<u>~</u>	PART-A	ion can	100 10 1	ilai II
1	а	Write the syntax of for loop with example.	2M	CO1	BTL1
	b	Write a Java program to demonstrate the use of the ternary operator to find the maximum of two numbers.	2M	CO1	BTL2
	c	What is the purpose of this keyword in java?	2M	CO2	BTL1
	d	Write a simple Java class 'Person' with attributes 'name' and 'age', and a method to print the person's details.	2M	CO2	BTL2
	e	What is an array in Java? How do you declare it in Java?	2M	CO3	BTL1
	f	Write the difference between extending an interface and implementing an interface?	2M	CO3	BTL2
	g	How do you check if a file exists or not using the File class?	2M	CO5	BTL2
	h	List and describe any two classes available in java.util package.	2M	CO6	BTL1
	i	What are the different ways to declare and initialize strings in java?	2M	CO6	BTL1
	j	How is Set different from List in Java?	2 M	CO6	BTL2
		PART-B			
		UNIT-I			
2	а	Write a Java program to swap two numbers without using third variable.	5M	CO1	BTL2
	b	Explain the four basic principles of Object-Oriented Programming with examples.	5M	CO1	BTL2
		OR			
3	а	Explain how shift operators can be combined with bitwise AND, OR, and XOR operators to manipulate	5M	CO1	BTL3
		specific bits in a binary number? Provide an example program demonstrating this combination?			
	b		5M	CO1	BTL2
	b	program demonstrating this combination? Discuss the various control statements with suitable	5M	CO1	BTL2

	b	Explain the concept of nested classes in Java and classify the different types of nested classes.	5M	CO2	BTL2
		OR		1	
5	а	Demonstrate method overloading in Java with a class 'Calculator' that provides overloaded methods to add two, three, or four integers.	5M	CO2	BTL3
	b	Write a Java program that demonstrates the difference between passing an object by value and passing a reference.	5M	CO2	BTL4
		UNIT-III			
6	а	Write a java Program to find largest and smallest elements in the given array of elements.	5M	CO3	BTL2
	b	Write a java program to implement multilevel inheritance.	5M	CO3	BTL3
		OR			
7	а	Write a Java program to create an interface 'Pet' and implement it in two classes: 'Cat' and 'Dog'. Also, demonstrate how multiple interfaces can be implemented.	5M	CO3	BTL6
	b	Write a Java program to perform linear search on an array of integers.	5M	CO3	BTL2
		UNIT-IV			
8	а	Write a java program to add sub package into a package.	5M	CO6	BTL2
	b	What are byte streams in Java? Describe the primary classes associated with byte streams and their key functions?	5M	CO5	BTL2
		OR			
9	а	Explain the need for wrapper classes in Java? How do they differ from primitive data types?	5M	CO6	BTL4
	b	Write a Java program that uses the throw keyword to raise a custom exception when invalid input is provided.	5M	CO4	BTL3
		UNIT-V			
10	а	Write a java program that replaces all occurrences of a specific word in a string with another word using the replace all method.	5M	C06	BTL3
	b	Describe how to create a new thread in Java using the Thread class? What is the role of the run() method in this process?	5M	CO6	BTL2
		OR			
11	а	Explain deadlock with an example.	5M	CO6	BTL3
	b	Explain any five important methods of the String class.	5M	CO5	BTL2

CODE: A1CS403T	R23] [H.T.No:					
		, ,						

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

SET-2

B.Tech II Year II Semester Regular Examinations May 2025 Subject Name: OPERATING SYSTEMS

Branch: CSE

Time: 3 Hours Max. Marks: 70

Instructions:

- 1. Answer all 10 questions from Part-A. Each question carries two marks
- 2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

	1.	narks						
		T			PART-A		1 1	
1	a				operating systems?	2M	CO1	BL1
	b		ome of the sy	stem calls.		2M	CO1	BL1
	С		is a thread?			2M	CO2	BL1
	d		e concurrenc			2M	CO2	BL1
	e				xist with monitor	2 M	CO3	BL1
	f			n for a deadlo		2M	CO3	BL1
	g	What space		vbacks of con	tiguous allocation of disk	2M	CO4	BL1
	h	What	are the basic	functions of	operating systems?	2M	CO4	BL1
	i	List tl	he various file	e attributes		2M	CO5	BL1
	j	Outlin	ne goals of file	e protection		2M	CO5	BL2
]	PART-B			
					UNIT-I			
2	a	Sumr	•	jectives and fu	anctions of an operating	5M	CO1	BL6
	b	Expla detail		system functi	ons and services in	5M	CO1	BL2
					OR		'	
3	а	Interp	oret about us	er and operat	ing-system interface	5M	CO1	BL2
	b				ting system debugging	5M	CO1	BL2
					UNIT-II			
4	а	Distin	nguish betwee	en thread and	process	5M	CO2	BL4
	b	Elabo	rate about th	reading issue	es.	5M	CO2	BL6
					OR			
5	а			bout thread li		5M	CO2	BL4
	b	the Retime I	ound Robin (First (Preemp	quantum =3) ; tive) schedulin nd time, and a	and Shortest remaining ng algorithms in terms of average waiting time for			
			Burst Time					BL2
		1	10	3		5M	CO2	
		2	10	4				
		3	2	1				
		4	11	2				
		5	5	0				

									UN	IIT-	III							
6	a	Conside	er th	ne fo	ollo	wing	qu	esti	ons	bas	sed	on	the	ba	nker 's			
		algorithm	:												.			
		Process	А	lloc	atio	n		М	ax		P	vai	lab	le				
		Frocess	Α	В	С	D	Α	В	С	D	Α	В	С	D				
		P0	0	1	1	0	0	2	1	0	1	3	1	0]			
		P1	1	4	4	1	1	6	5	2					1			
		P2	1	3	6	5	2	3	6	6					1			
		Р3	0	6	3	2	0	6	5	2					1	10M	CO2	BL6
		P4	0	0	1	4	0	6	5	6					1			
		(a) Define	safe	ety a	lgor	rithn	n.				一		Т		'			
			(a) Define safety algorithm. (b) What <u>is</u> the content of the matrix Need?															
		(c) Is the	(c) Is the system in a safe state? Mention the order in which															
		processes																
		(d) If a red	-		_					es f	or (2	2, 1,	1,	0), c	an the			
		request be granted immediately?																
7	a Describe the conditions necessary for deadlock																	
'	a	Describe the conditions necessary for deadlock prevention.													5M	CO3	BL2	
	b	Explain various ways that can be used to recover from													er from	5M	CO3	BL5
		Deadlock														JIVI	CO3	DLO
0		VVII1	41		. 1			:		IIT-		4:						
8	a	When does										unş	gs	yste	em, and	5M	CO4	BL2
	b	Discuss t										strı	act	ure	with a	F3.6	004	DIC
		neat sket														5M	CO4	BL6
	1	T								OR						T	T = 1	
9	a	Define pa											_	_		5M	CO4	BL2
	b	Given the 1 2 0 1 7		_				•	_									
		Optimal														5M	CO4	BL2
		replaceme													a page			
		_								TIN								
10	a	Explain a														5M	CO5	BL5
	b	Interpret	abo ⁻	ut f	ıle-	syst	tem	pa				d n	10U	ınti	ng	5M	CO5	BL2
11	а	Discuss	in	det	ail	ah	011f	fi		OR		1 2	nd	d	irectory			
11	a	implemen			an	au	Jut	11	10	sy s	CII	. 0	uiu	· u	псски	5M	CO5	BL6
	b	What is a			mat	rix?	Ex	pla	in	the	vai	riou	ls 1	net	hods to	51/	COE	DI 1
		implemen														5M	CO5	BL1

CODE: A14401 R23 H.T.No:

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

SET-1

B.Tech II Year II Semester Regular Examinations May 2025

Subject Name: PROBABILITY & STATISTICS

Time: 3 Hours Branch: CSE Max. Marks: 70 **Instructions:**

Answer all 10 questions from Part-A. Each question carries two marks
 Answer one full question from each unit in Part-B. Each full question carries 10 marks

2	2. <i>P</i>	inswer or	ie full	questio	n from	ı each				h full	questi	on car	ries	10 ma	rks	
		- a		•	001	-		PART-A		000						
1	a	3 8 3								X.	2M	CO1	BTL1			
	b	The state of the s									2M	CO1	L2			
		In a shooting test the probability of A, B, C hitting the targets are 1/2,									2M					
	С	2/3and3/4 are respectively. If all of them first at the same target. Find the probability that i) Only one of them hits the target,										CO2	L3			
								the tai	rget,							
		ii) at leas												02.5		
	d	If $P(A)=$	1/3,	P(B)=3	4 and	P(AUB	s)= 11	/12 t	hen fin	d P(E	B/A) an	d P(A,	/B).	2M	CO2	L5
		If mean and variance of binomial distribution are 2 and 2/3 respectively,								vely,	2M	000	T 4			
	е	then find	d P[X≥	≥1].								-	•		CO3	L4
	f	If X is a Poisson variate and $P(X=1)=P(X=2)$. Then find $P(X=0)$.									2M	CO3	L4			
	g	Define null hypothesis and alternative hypothesis.									2M	CO4	L1			
	h	Write th	ne Co	nfidenc	e inte	rval fo	or pai	ramete	rs in	one	sample	and	two	2M	CO4	L1
	11	samples													CU4	LI
	i	Write th	e cond	ditions f	or vali	dity of	x² − d	istribu	tion.					2M	CO5	L2
		What is								at nro	nerties	s of th	e F-	2M		
	j	distribut		4100		aa	· State		-porta	P10	Portion	. 01 (1			CO5	L1
							F	PART-E	3					1		l .
								UNIT-I								
2	а	Find the	corre	lation o	oefficie	ent for				butio	n.					
_	_		39	65	62	90	82	75	25	98		78		5M	CO1	BTL5
			47	53	58	86	62	68	60	9:		84		0111		DIE
	b	An anal											v =8			
	~	and the														
		3x - 4y													001	
		informat		anar	- O	y — 02		ia tiic	10110	VIII-S	Daoio	or a	DOVE	5M		D/TI E
		(i) Mean		of wan	da									SIM	CO1	BTL5
					-			107								
		(ii) Correlation coefficient between x and y .														
	(iii) S. D of x and y.															
2	_	01-4-:	1	1 - 4:	cc:	:-:	` 41	OR	:1 - 4						I	
3	a	Obtain t									60	70	7			
		X	10	12	15			28	30	45	60	72		5M	CO1	BTL5
			32	35	42			52	30	65	68	70				
	b	Find the	regre	ession li	ne of \overline{Y}	on X	for the	e follow	ing da	ta.						
		X	34	48	4	15	40	39		52	50			5M	СО	BTL5
		Y	52	48	4	19	50	52	2	44	46					
							Ţ	U NIT-I I	[
4	а	If the pro					dom v	ariable	is give	en by	P(2	X = X	=			
		kx, x =			then fi	ind										
		(i) the va			.=											
		(<i>ii</i>). P(X l	peing	a prime	numb	er).								5M	CO2	BTL4
		(iii) $P\left[\frac{1}{2}\right]$	~ V ~	- <u></u> - 1	T ₁											
		(ui) \mathbf{L}_{2}	~ A ~	$\frac{1}{X}$	1).											
		(<i>iv</i>). the														
	b	Three m							cal ite	ns. C	f their	respe	ctive			
		output														
		produce												5M	CO2	BTL4
		remaind												JIVI		דעוע
		the prob		ies that	it is n	nanufa	cture	d from	Machi	ne M	1, Mac	hine N	I_2 or			
	Machine M ₃ .										i .	1	1			
			1V13.													
5	a	A rando						OR	11. 6					5M	CO2	BTL4

	1		V	0	1	_	1	0	2	1	Т		
			X	-2	-1	0	1	2	3	-			
			P(x)	0.1	k	0.2	2k	0.3	k				
	1-	Determine (i) k				.≥0) <i>a</i>	and P(-1 <x<< td=""><td>(3) (ii</td><td>i) mean</td><td></td><td>000</td><td>ב דעד כ</td></x<<>	(3) (ii	i) mean		000	ב דעד כ
	b	State and prove	е вауе	s tnec	orem		UNI	r III			5M	CO2	BTL3
6	а	20% of items 1	aroduo	ed fro	om a	facto			ctive	. Find the probability			
	<u> </u>									ective (ii) $p(1 < x < 4)$	5M	CO3	BTL3
	b									a certain bakery have			
										ndard deviation of 2			
						e len	gths	are n	orma	ally distributed, what			
		percentage of the				2					5M	CO3	BTL4
		(a) longer than(b) between 29.					s in le	ngth?)				
		(c) shorter than											
							0						
7	a									day follows Poisson		000	D. W. 1
										ability that the total is less than 2?	5M	CO3	BTL4
	b									ited with mean 68kgs			
										ıdents have masses (i)	5M	CO3	BTL4
				ii) Les	ss tha	an or	equal	l to 6	4 kgs	s (iii) Between 65 and	SIVI	003	DIL
		71kg inclusive.					TIRIT	T 137					
8	а	UNIT-IV The mean and standard deviation of a population are 11,795 and 14,054											
O	ľ									ne maximum error if			
		$\overline{x} = 11,75$ and n=50 and also construct a 95% confidence interval for the									L L N/I	CO4	BTL3
		true mean.											
	b									taken by them to get			
										6.1 minutes. Can we or of alternative null		CO4	BTL3
		hypothesis µ >3								or alternative hull			
							0	_					
9	a									t bulbs produced by a			
			_							dard deviation of 130		CO4	
								_		by the company, test	02.12		BTL4
			_			_		alteri	nativo	e hypothesis μ > 1650			
	h	hours, using a							900	sample middle class			
	b									S.D of 240 grams. A		CO4	
		similar sample	surve	y of	1200	work	ing cl	ass c	onsu	mers gave a mean of	EM		BTL2
										in saying that the two		CO+	D112
		classes consui significance.	me th	e san	ne q	uantit	y of	food	grain	ns? Use 5% level of			
		significance.					UNI	T-V					
10	а						rding	to the		e (in seconds) to run a			
										ether two horses have			
		same running of	capacit		teren 28	ce of '	1wo N). 33	29 34	5M	CO5	BTL4
		Horse A Horse B			29	30	30	33 24	27	29 -			
	b		5 men	out						be smokers. Does this			
		information su								ty of men in this city		CO5	BTL4
		are smokers?											
11	а	A sample of	400 jt	eme	is to	ken		R a no	กมใจ	tion whose standard			
	ا a									t whether the sample		CO5	BTL4
		has come from	a popu	ulatio	n mea	an 38							
	b				o rar					cco are given below.			
İ		Sample I Sample II	21 22	24		25 28		<u>26</u> 30		27 31 36	5M	CO5	BTL4
		Can you say th			ampl								
	1	j - u - ouj tii					***			- T L		l	

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN

(AUTONOMOUS)

B.Tech II Year II Semester Regular Examinations May 2025

SET-2

Subject Name: Software Engineering

Branch: CSE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

	4. 1	nswer one full question from each unit in Part-B. Each full quest PART-A	ion ca	11103 10	marks
1	а	Define the Waterfall model.	2M	CO1	L1
	b	Mention two notable changes in software practices.	2M	CO1	L2
	С	Define software project management.	2M	CO2	L1
	d	What is a formal specification?	2M	CO2	L2
	e	What is the purpose of design review?	2M	CO3	L2
	f	Define cohesion and coupling.	2M	CO3	L1
	g	What is black-box testing?	2M	CO4	L2
	h	Define software quality.	2M	CO4	L2
	i	Define CASE environment.	2M	CO5	L2
	j	Define reuse in software engineering.	2M	CO5	L1
		PART-B			
		UNIT-I			
2	а	Describe the Spiral model.	5M	CO1	L2
	b	How does Agile improve software development?	5M	CO1	L4
	_	OR			
3	a	Discuss RAD's pros and cons.	5M	CO1	L4
	b	Explain the Software Life Cycle. Why is it important.	5M	CO1	L4
	1	UNIT-II			
4	а	Compare axiomatic and algebraic specification techniques.	5M	CO2	L3
	b	Describe the responsibilities of a software project manager in detail.	5M	CO2	L2
	•	OR			
5	а	Explain the complexities involved in software project management.	5M	CO2	L3
	b	What are the components of a good Software Requirements Specification (SRS)?	5M	CO2	L2
		UNIT-III			
6	a	Describe the key steps in the software design process.	5M	CO3	L2
	b	Compare different approaches to software design.	5M	CO3	L4
		OR			
7	а	Explain the significance of agility and how it impacts the cost of change.	5M	СОЗ	L3
	b	Explain the characteristics of a good user interface.	5M	CO3	L2
	•	UNIT-IV			
8	а	Describe the steps involved in the debugging process.	5M	CO4	L3

	b	Discuss the role of a Software Quality Management System (SQMS).	5M	CO4	L2								
	OR												
9	а	What are the key features and advantages of integration testing?	5M	CO4	L2								
	b	What is software reliability? How can statistical testing help assess it?	5M	CO4	L3								
UNIT-V													
10	а	Explain the concept of second-generation CASE tools and their features.	5M	CO5	L3								
	b	Explain the scope and purpose of CASE tools in the software development life cycle.	5M	CO5	L2								
OR													
11	а	Explain the software maintenance process models in detail.	5M	CO5	L3								
	b	Discuss the concept and challenges of software reverse engineering.	5M	CO5	L3								
