CODE: A14303T R23	H.T.No:									
---------------------------------	---------	--	--	--	--	--	--	--	--	--

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations June 2025

Subject Name: Digital Circuits Design Branch: ECE

Time: 3 Hours Max. Marks: 70

Instructions:

- 1. Answer all 10 questions from Part-A. Each question carries two marks
- 2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

		PART-A			
1	Ι.		01/1	001	т 1
1	a	What is the Gray equivalent of (65) ₁₀ ?	2M	CO1	L1
	b	Draw the logic circuit of a 2 line to 4 line decoder.	2M	CO1	L1
	С	Write Verilog code using Case statement.	2M	CO2	L1
	d	Where the ripple counter is used? Explain.	2M	CO2	L1
	e	Compare PROM, PLA & PAL.	2M	CO3	L2
	f	If $143_5 = X_6$, then X is	2M	CO3	L1
	g	What is the working principle of a priority encoder?	2M	CO4	L1
	h	Mention data types used in Verilog HDL.	2M	CO4	L1
	i	What is the difference between synchronous and asynchronous counter?	2M	CO5	L1
	j	What is the working principle of a sequence detector?	2M	CO5	L1
		PART-B			
		UNIT-I			
2	а	Convert the following number systems. i) (631.134) ₈ = () ₁₆ ii) (150) ₁₀ = () ₁₆	5M	CO1	L3
	b	Convert the following Boolean expression into standard SOP form: ABC + AB + ABCD	5M	CO1	L3
		OR	1		Ī
3	а	Minimize the following expressions using K-map and realize using logic gates: $F=\sum m(0,7,8,9,10,12)+d(2,5,13)$	5M	CO1	L3
	b	Discuss the Laws and Theorems of Boolean Algebra.	5M	CO1	L4
	•	UNIT-II		•	
4	а	Design a 4-bit digital comparator and explain.	5M	CO2	L4
	b	Design a Full adder with a 3x8 decoder.	5M	CO2	L4
	•	OR		•	
5	а	Design a 32:1 Multiplexer using 4:1 Multiplexers.	5M	CO2	L4
	b	Draw the logic diagram for 4 bit binary adder-subtractor circuit and explain its operation.	5M	CO2	L4

			U	NIT-III							
6	а	Explain the follow Verilog. a) White space b)	_		ith examples in	5M	CO3	L3			
	b	Write Verilog cod 2 to 4 decoder?			nodule by using	5M	CO3	L4			
				OR							
7	а	Write Verilog mowith test bench.	<u>-</u>			5M	CO3	L2			
	b	Explain port Decode.	claration with	an example	e using Verilog	5M	CO3	L3			
	UNIT-IV										
8	а	Design a Mod-10	counter using I	RS flip-flops		5M	CO4	L4			
	b	Draw and explain NAND RS latch.					CO4	L2			
	1			OR							
9	а	Convert JK flip fl	Convert JK flip flop into SR flip flop.					L2			
	b	Design a 3-bit Jo	hnson counter.			5M	CO4	L4			
	•		τ	JNIT-V							
10	a	Convert the follow Moore machine:			corresponding						
			PS	NS X = 0	X = 1						
			A	B,0	E,0	5M	CO5	L2			
			B C	E,0 D,1	D,0 A,0						
			D	C,1	E,0						
			E	В,0	D,0						
	b	Discuss merits &	demerits of PAI	L, PLA with	neat sketches.	5M	CO5	L4			
	_			OR							
11	а	Implement f (A PAL.	$(B,C,D) = \sum m(0,$	1,3,5,6,8,9,	11,12,13) using	5M	CO5	L4			
	b	Compare and con	ntrast CPLD and	FPGA with	neat sketches.	5M	CO5	L2			

CODE: A14302T R23 H.T.No:

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations June 2025 SUBJECT NAME: ELECTRONIC DEVICES AND CIRCUITS BRANCH: ECE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

	2. F	answer one full question from each unit in Part-B. Each full quest PART-A	ion carr	1es 10 1	marks
1		Define diffusion capacitance and transition capacitance			
1	a	of a PN junction diode.	2M	CO1	BTL2
	b	List the applications of LED.	2M	CO1	BTL1
	С	What is the early effect?	2M	CO2	BTL1
	d	What is thermal runaway? How it can be avoided?	2M	CO2	BTL2
	e	Define threshold voltage.	2M	CO3	BTL1
	f	Define threshold voltage of a MOSFET.	2M	CO3	BTL2
	g	Write the advantages of h parameters.	2M	CO4	BTL1
	h	Define the transconductance of BJT.	2M	CO4	BTL1
	i	Define Intrinsic gain (AV) in small signal MOSSFET model.	2M	CO5	BTL1
	j	What is a source follower?	2M	CO5	BTL1
		PART-B			
		UNIT-I			
2	a	Discuss about effect of temperature on PN junction diode.	5M	CO1	BTL3
	Ъ	A 230V, 60Hz voltage is applied to the primary of a 5:1 stepdown center tapped transformer used in a full wave rectifier having a load of 900Ω , if the diode resistance and secondary coil resistance together as a resistance of 100Ω . Determine i) DC values, RMS values, PIV ii) Efficiency iii) Output frequency iv) Form factor.	5M	CO1	BTL4
		OR		Т	
3	a	Explain the operation of the CLC filter concerning the ripple factor for a full wave rectifier.	5M	CO1	BTL4
	b	Explain the operation of UJT and draw its I-V characteristics.	5M	CO1	BTL3
		UNIT-II		T	
4	a	Draw and explain the input and output characteristics of common collector configuration.	5M	CO2	BTL4
	b	A transistor has I_B =100mA and I_C =2 mA. Find α and β . If			
		$I_B changes$ by +25 μA and $I_C changes$ by +0.6 mA, find the new value of $\beta.$	5M	CO2	BTL3
	T.	OR		1	
5	а	Explain the input and output characteristics of transistors in CE configuration.	5M	CO2	BTL3
	b	Discuss in detail about DC and AC load lines.	5M	CO2	BTL4

		UNIT-III			
6	a	Explain the device structure and physical operation of n-channel enhancement type MOSFET.	5M	CO3	BTL3
	b	Explain how the MOSFET acts as an amplifier and switch.	5M	CO3	BTL3
		OR		,	
7	a	Explain the separation of DC analysis and signal analysis of MOSFET.	5M	соз	BTL3
	b	What is biasing? Explain the biasing of a MOSFET using drain to gate feedback resistor.	5M	СОЗ	BTL4
	4	UNIT-IV		1	
8	а	With a neat sketch explain the operation of the CE amplifier without emitter resistor.	5M	CO4	BTL4
	b	Discuss about separating the signal and DC quantities.	5M	CO4	BTL4
		OR			
9	a	Draw the common emitter amplifier with emitter resistor and explain its operation.	5M	CO4	BTL4
	b	Draw and explain the operation of common collector amplifier.	5M	CO4	BTL4
	1	UNIT-V		1	I
10	a	Discuss about separating the DC analysis and signal analysis in MOSFET.	5M	CO5	BTL3
	b	The transistor is connected as a C.E. amplifier with Rs = 1 K Ω , R1 = 50 K Ω , R2 = 2K Ω , R=1K Ω , R1=1.2K Ω , h _{ie} =1100 Ω , h _{re} =2.5x10 ⁻⁴ , h _{fe} =50, h _{oe} =25 μ A/V. Find the various gains and the input and output impedances using small signal analysis.	5M	CO5	BTL4
		OR			
11	a	Derive the gain, input, output impedance of MOSFET common source amplifier without source resistance.	5M	CO5	BTL4
	b	With the small signal equivalent circuit of common gate MOSFET amplifier, derive Av, Zi, Zo.	5M	CO5	BTL4

CODE: A14302

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B. Tech II Year I Semester Supplementary Examinations June 2025 Subject Name: Probability and Complex Variables

Time: 3 Hours Branch: ECE Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

		Swer one full question from each unit in Part-B. Each full question ca		i o iliai i	
-	1	PART-A		-	
1	а	If A and B are independent events where $P(A) = 0.4$ and $P(A \cup B) = 0.7$, then find $P(B)$.	2M	CO1	L1
	b	For the continuous probability function $f(x) = Kx^2e^{-x}$ when $x > 0$. Find K	2M	CO1	L1
	_	*** - *	2M	CO2	
	С	Write the properties of characteristic function		CO2	
	d	Let X , and Y be the life spans (in hours) of two electronic devices, and their joint probability mass function is given below. Determine the value of k . $f(x,y) = \begin{cases} ke^{-7x-14y}, 0 < x < y < \infty \\ 0, Otherwise \end{cases}$	2M	CO2	L3
	e	Define joint characteristic function.	2M	CO3	L1
	f	Test whether the function is valid joint density or not. $f_{xy}(x,y) = \begin{cases} 1/24, 0 \le x \le 6, 0 \le y \le 4 \\ 0, & \text{elsewhere} \end{cases}$	2M	CO3	L4
	g	Write the Cauchy Riemann equations in polar form	2M	CO4	L3
	h	Show that $f(z) = z^2$ is an analytic.	2M	CO4	L1
	i	What type of singularity has the function $f(z) = \frac{z - \sin z}{z^2}$	2M	CO5	L1
	j	Find the residue of $f(z) = \frac{ze^{2z}}{(z-1)^3}$ at its pole.	2M	CO5	L1
		PART-B			
		UNIT-I	1 1		
2	а	If A, B, C are mutually independent events, then prove that $A \cup B$ and C are also independent.	5M	CO1	L1
	Ъ	In a bolt factory machines A1, A2, A3 manufacture respectively 25%, 35% and 40% of the total output. Of these 5, 4, and 2 percent are defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machine A2? OR	5M	CO1	L5
3	а	The probability density $f(x)$ of a continuous random variable			
	a	is given by $f(x) = ke^{- x }$, $-\infty < x < \infty$, Show that $k = 1/2$ and find the mean and variance of the distribution. Also find the probability that the variate lies between 0 and 4.	5M	CO1	L1
	b	A random variable X follows Poisson distribution. Find its variance?	5M	CO1	L1
	1	UNIT-II	1		
4	a	A random variable X has the density function e^{-x} for $x \ge 0$. Show that Chebychev's inequality gives $P(X-1 > 2) < \frac{1}{4}$ and	5M	CO2	L1
		show that the actual probability e^{-3} .			

	1									
	b	The joint density of X and Y is given by								
		$f(x, y) = \begin{cases} e^{-(x+y)}, 0 < x, y < \infty \\ 0, Otherwise \end{cases}$	5M	CO2	L1					
		0, Otherwise	JIVI	CO2	Di					
		Find the density function of the random variable X/Y .								
	OR									
5	a	Define the joint distribution function? List out various	5M	CO2	L2					
		properties.	OIVI							
	b	Let X , and Y be the life spans (in hours) of two electronic								
		devices, and their joint probability mass function is given below.								
			5M	CO2	L3					
		$f(x, y) = \begin{cases} ke^{-7x-14y}, & 0 < x < y < \infty \\ 0, & Otherwise \end{cases}$								
		Determine the value of k .								
6	а	Define characteristic function and its properties.	5M	CO3	L3					
O	b	Define correlation and covariance of two random variables X	SIVI							
	D	and Y	5M	CO3	L1					
		OR								
7		The random variables X and Y have the joint pdf		~ ~ ~						
		$f_{xy}(x,y) = \frac{1}{24}$ for $0 < x < 6 \& 0 < y < 4$	5M	CO3	L3					
		UNIT-IV								
8	а	Determine whether the function $2x^2y+i(x^2-y^2)$ is analytic	5M	CO4	L3					
	b	If $w(x, y) = \phi(x, y) + \psi(x, y)$ represents the complex potential for								
		an electric field and $\phi = x^3 - 3xy^2$, determine the function ψ .	5M	CO4	L3					
		OR								
9	а									
		Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) \left \operatorname{Re} f(z) \right ^2 = 2 \left f'(z) \right ^2$, where $f(z)$ is a	5M	CO4	L1					
			JIVI	COT	LI					
	b	analytic function Find the analytic function whose imaginary part is								
	D		5M	CO4	L1					
		$e^{x}(x\sin y + y\cos y)$								
10		UNIT-V								
10	а	Evaluate using Cauchy's integral formula $\int_{C} \frac{e^{3z}}{(z-1)(z-2)} dz$		007						
			5M	CO5	L3					
		where C is the curve $ z = 3$.								
	b	Show that $\int_{0}^{2\pi} \frac{dz}{a + b \sin \theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}, a > b > 0, \text{ using residue}$								
		$\int_0^a a + b \sin \theta \sqrt{a^2 - b^2}, \text{ and } \delta$	5M	CO5	L3					
		theorem.								
	ı	OR	<u> </u>							
11	а	Find the Laurent series expansion of $f(z) = \frac{1}{z^2 - 4z + 3}$ for								
		2 12 13	5M	CO5	L1					
		(i)1 < z < 3 (ii)1 < z (iii) z < 3								
	b	Evaluate $\int_{-\infty}^{\infty} \frac{dz}{x^4 + 1}$, using residue theorem.	5M	CO5	L1					
		$\int_{-\infty}^{\infty} x^4 + 1$	0141		171					

CODE: A14301T R	23	H.T.No:										
------------------------	----	---------	--	--	--	--	--	--	--	--	--	--

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations June 2025
Subject Name: SIGNALS, SYSTEMS AND STOCHASTIC PROCESSES
BRANCH: ECE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

		PART-A			
1					
1	a	Find the even and odd components of the signal $x(t) = \cos t + \sin t + \sin t \cos t$.	2M	CO1	BTL1
	b	Write Dirichlet conditions for Fourier series	2 M	CO1	BTL1
	С	What do you mean by BIBO stability?	2M	CO2	BTL2
	d	Write the modulation property of Fourier Transform.	2M	CO2	BTL2
	e	Write the condition for LTI system to be a distortion less system.	2M	CO3	BTL2
	f	Define system bandwidth.	2M	CO3	BTL1
	g	Prove the statement $R_{xx}(-\tau) = R_{xx}(\tau)$?	2 M	CO4	BTL2
	h	Define Time average and Ergodicity?	2M	CO4	BTL1
	i	Define cross power spectral density of two random process?	2M	CO5	BTL1
	j	Show that $s_{xx}(\omega) = s_{xx}(-\omega)$.	2M	CO5	BTL2
		PART-B			
		UNIT-I			
2	а	Explain the various operations on signals?	5M	CO1	BTL3
	b	Find whether the signal $f(t) = 10 \text{ Sin } (12\pi t) + 2 \text{ u}(t)$ is periodic or not? If periodic what is its fundamental period.	5M	CO1	BTL3
		OR			
3	а	Define mean square error and derive the expression for evaluating mean square error.	5M	CO1	BTL4
	b	Determine whether the following function is periodic or not. If so, find the period. $x(t)=3\sin 200\pi t + 4\cos 100t$.	5M	CO1	BTL3
		UNIT-II			
4	A	Solve by using Laplace transforms y"-3y'+2y=4 given that y=2, y'=3 when x=0.	5M	CO2	BTL3
	b	Distinguish between Fourier Series analysis and Fourier Transform?	5M	CO2	BTL3
		OR			
5	а	Find L.T X(S) and sketch the pole-zero plot with ROC for following signals. i. $x(t) = e^{-2t} u(t) + e^{-3t} u(t)$ ii. $x(t) = t u(t)$	5M	CO2	BTL4
	b	State and prove Convolution and Differentiation Properties of L.T?	5M	CO2	BTL3
		UNIT-III			
6	а	Explain the effects of under sampling?	5M	CO3	BTL3
	b	Expain the how input and output signals are related to impulse of LTI system.	5M	CO3	BTL3

		0.7								
		OR								
7	а	Determine the relation between bandwidth and rise time.	5M	CO3	BTL3					
	b	Explain the ideal characteristics of LPF, HPF, BPF and	5M	СОЗ	BTL2					
		BSF using their Magnitude and Phase responses.								
	UNIT-IV									
8	a	A random process $x(t) = a \sin (\omega_0 t + \theta)$ where θ is	5M	CO4	BTL3					
		uniform over $(0,2\pi)$. Find if it is ergodic or not.	OIVI	001	DILO					
	b	Derive the equation for cross correlation function of	5M	CO4	BTL4					
		Input and Output of a system.	JWI	CO4	DIL					
	OR									
9	a	Show that the auto correlation function of a stationary	5M	CO4	BTL3					
		random process is an even function of τ ?	SIVI	CO4	DILO					
	b	Explain cross covariance and auto covariance functions?	5M	CO4	BTL3					
		UNIT-V								
10	a	Find the cross-correlation function for cross power								
		density spectrum in $S_{xx}(\omega) = \frac{8}{(\alpha + j\omega)^3}$.	5M	CO5	BTL3					
		$(\alpha+j\omega)^3$								
	b	Explain Gaussian random process?	5M	CO5	BTL3					
		OR								
11	а	Derive the relationship between Cross Power Density	5M	CO5	BTL3					
		Spectrum and Cross- Correlation Function.	OIVI	CO3	כתום					

CODE: A12301 R23

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations June 2025

Subject Name: Universal Human Values
Branch: CSE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

	<u> </u>	PART-A	carric	3 10 111	arks
1	а	Why is happiness considered more important than prosperity?	2M	CO1	L1
	b	What are the three criteria that answers must fulfill to be considered from natural acceptance?	2M	CO1	L1
	С	What are the primary differences between the needs of the self and the body?	2M	CO2	L2
	d	Define "Sensation" and explain its role in forming desires.	2M	CO2	L2
	e	Describe the concept of reverence in relationships.	2M	CO3	L3
	f	How does showing respect contribute to harmony within a family?	2M	СОЗ	L3
	g	Describe one example of harmony observed in natural ecosystems.	2M	CO4	L1
	h	How does understanding harmony in nature influence human behavior towards the environment?	2M	CO4	L2
	i	What does a holistic understanding of ethics mean in a professional context?	2M	CO5	L2
	j	Define Utility Value (Upayogita Mulya).	2M	CO6	L4
		PART-B			
		UNIT-I			
2	а	How does value education address the deficiencies in the current education system? Discuss its potential impact on improving educational outcomes.	5M	CO1	L1
	b	Define Svatva, Swatantrata, and Swarajya. Explain their significance in the context of personal and societal values.	5M	CO1	L2
		OR			
3	а	What is meant by natural acceptance, and how can it improve human relationships?	5M	CO1	L2
	b	How do modern notions of wealth and prosperity impact ecological and social issues? Discuss the implications for human and environmental well-being.	5M	CO1	L6
	1	UNIT-II	T	T	1
4	а	How does "Right Understanding" lead to definite human conduct and harmony?	5M	CO2	L3

	b	Why is it important to balance the needs of the body and the self for overall health and happiness?	5M	CO2	L4
OR					
5	а	Discuss how imagination can be used as a tool for problem-	53.6	000	T. C
		solving and personal growth.	5M	CO2	Lo
	b	How do the physical needs of the body differ from the	5M	CO2	1.2
		emotional and mental needs of the self?	OIVI	002	122
UNIT-III					
6	а	Discuss the importance of gratitude in strengthening family	5M	CO3	L2
	b	bonds.			
	D	Why is self-respect important, and how does it impact one's relationships with others?	5M	CO3	L1
		OR			
7	а	Explain how societal differentiation based on wealth impacts		000	T 4
		mutual respect.	5M	CO3	L4
	b	Discuss the importance of communication in maintaining	5M	CO3	1.6
		harmony within families and communities.	JIVI	CO3	LO
		UNIT-IV			
8	а	Discuss the implications of misunderstanding the natural			
		characteristics of the material and plant orders in Modern	10M	CO4	L4
		society, especially regarding the pursuit of growth and			
		development. OR			
9					
	a	Describe the mutual fulfillment among the four orders of nature. How do the needs of one order contribute to the	5M	CO4	1.3
		well-being of another?	OIVI	001	Bo
	В	Explain the four orders of nature (material, plant, animal,			
		and human). How are these orders interconnected and	5M	CO4	L5
		interdependent in maintaining the overall balance of nature?			
		UNIT-V			
10	а	Discuss the implications of value-based living across all four			
		levels: Individual, family, society, and nature. Provide	5M	CO5	L5
		specific examples for each level.			
	b	How does ethical conduct affect personal integrity and social	5M	CO5	L4
		trust?			
OR					
11	a	Elaborate on the comprehensive human goal and its relevance to professional ethics. How can professionals	10M	CO6	14
		align their activities with this goal?	10101	C00	124
		****			l
