CODE: A10101 R23 H.T.No:

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

SET-1

B.Tech I Year II Semester Regular Examinations May 2025

Subject Name: Basic Civil & Mechanical Engineering

Branch: ECE

Time: 3 Hours Max. Marks: 70

Note: Part A must be answered from page no 3-16 and Part B must be answered from 19-34 pages

			PART-A (Civil Engineering Part)			
		Ansv	wer all questions, each question carries one marks	1		
1	8	a	List out the various subdivisions of the Civil	1M	CO1	L1
	1	1_	Engineering.	1 1 1 1	001	т 1
		<u>b</u>	List the uses of Bricks?	1M	CO1	L1
	_	C -1	Mention any four uses of the Surveying. Mention the types of Bearings.	1M	CO2	L1
		<u>d</u>	1M	CO2	L1	
	(<u>e</u>	Define Rigid pavements.	1 M	СО	L1
			Answer all three units, 03 X 10 = 30 Marks UNIT-I			
2	а		Explain elaborately the role of Civil Engineer in the society.	5M	СО	L2
	b		State the importance of Geo-technical Engineering?	5M	CO1	L5
	L		OR	OIVI		בען
3	а		Explain about the types of cement in Detail?	5M	CO1	L2
	b		Describe briefly about the water resources, structural			
			and transportation Engineering.	5M	СО	L2
			UNIT-II			
4	4 a		The following staff readings were observed successively with a level, the instrument have been moved after third, sixth and eighth readings: 3.150, 1.605,0.920,2.600,2.900, 1.125, 0.605, 2.265 m. calculate the R.L of points if the first reading was taken with a staff held on a bench mark of 110.0 m carryout the arithmetic check?	10M	CO2	L3
	•		OR			
5		а	Summarize the objectives of surveying?	5M	CO2	L2
		b	Discuss about Leveling instruments used for Leveling?	5M	CO2	L6
			UNIT-III			
6		а	Explain the types and important components of airports.	5M	СОЗ	L2
		b	Explain the types of railway gauges and sleepers.	5M	CO3	L2
			OR	01,1		
7	a	a II	llustrate the importance of Environmental engineering?	5M	CO3	L2
			Vrite short notes on Railway engineering?	5M	CO3	L2
			PART-B (Mechanical Engineering Part)			
			Answer all questions, each question carries one mark	S		
8		а	What is composite material?	1 M	CO1	L1
		b	Write any two forming process.	1M	CO1	L1
		С	What is function of boiler?	1M	CO2	L1

d	What are four strokes in petrol engine?	1M	CO2	L1				
e	List out types of Engineering materials?	1M	CO3	L1				
	Answer all three units, 03 X 10 = 30 Marks							
	UNIT-I							
	OR		,					
	What are the different types of ferrous metals, explain the basic properties and its applications?	10M	CO1	L2				
ÛNIT-II								
	10M	CO2	L2					
	OR		1					
	Explain various components and working of Hybrid vehicles with neat sketch.	10M	CO2	L2				
•	UNIT-III							
	Discuss in detail working principle of Nuclear Power plant with neat sketch.	10M	СОЗ	L2				
	OR			•				
а	Explain about the Robot configurations with neat Sketches?	5M	CO3	L2				
b	What are the applications of robots?	5M	CO3	L1				
	e	Answer all three units, 03 X 10 = 30 Marks UNIT-I Explain the contributions of Mechanical Engineering to the welfare of society? OR What are the different types of ferrous metals, explain the basic properties and its applications? UNIT-II What is mean by casting? Explain the principles of casting with neat sketch? OR Explain various components and working of Hybrid vehicles with neat sketch. UNIT-III Discuss in detail working principle of Nuclear Power plant with neat sketch. OR Explain about the Robot configurations with neat Sketches?	Answer all three units, 03 X 10 = 30 Marks UNIT-I Explain the contributions of Mechanical Engineering to the welfare of society? OR What are the different types of ferrous metals, explain the basic properties and its applications? UNIT-II What is mean by casting? Explain the principles of casting with neat sketch? OR Explain various components and working of Hybrid vehicles with neat sketch. UNIT-III Discuss in detail working principle of Nuclear Power plant with neat sketch. OR Explain about the Robot configurations with neat Sketches?	Answer all three units, 03 X 10 = 30 Marks UNIT-I Explain the contributions of Mechanical Engineering to the welfare of society? OR What are the different types of ferrous metals, explain the basic properties and its applications? UNIT-II What is mean by casting? Explain the principles of casting with neat sketch? OR Explain various components and working of Hybrid vehicles with neat sketch. UNIT-III Discuss in detail working principle of Nuclear Power plant with neat sketch. OR Explain about the Robot configurations with neat Sketches? OR Explain about the Robot configurations with neat Sketches?				

CODE: A10004 R23 H.T.No:

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech I Year II Semester Regular Examinations May 2025

Subject Name: Chemistry Branch: ECE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

1		DADT A			marks
		PART-A			
1	а	What is bond order and give the formula to calculate the bond order.	2 M	CO1	BTL1
	b	Write the significance of Ψ and Ψ^2 .	2M	CO1	BTL2
	С	Define semiconductor with an example.	2M	CO2	BTL1
	d	Write any four applications of carbon nano tubes?	2M	CO2	BTL3
	е	What is an electro chemical cell?	2M	CO3	BTL1
	f	Define the electro chemical sensor.	2M	CO3	BTL1
	g	What is the functionality of a monomer?	2M	CO4	BTL1
	h	Define biodegradable polymer with an example.	2M	CO4	BTL1
	i	State the Beer-Lamberts law.	2M	CO5	BTL1
	j	Define electromagnetic spectrum.	2M	CO5	BTL1
	. •	PART-B			
		UNIT-I			
2	а	Explain the molecular orbital energy level diagram of CO molecule with magnetic property.	5M	CO1	BTL2
	b	Describe the postulates of molecular orbital theory.	5M	CO1	BTL2
		OR			
3	а	Explain the π-molecular energy level diagram of 1,3-		001	D/DI O
		butadiene.	5M	CO1	BTL2
	b	Explain the molecular orbital energy level diagram of O ₂	5M	CO1	BTL2
		molecule with magnetic property. UNIT-II			
4		What are the properties and applications of fullerenes?	5M	CO2	BTL3
4	a b	Explain the classification and applications of super	SIVI	CO2	DILO
	ט	conductors.	5M	CO2	BTL3
		OR		1	1
5	a	What are the properties and applications of graphines?	5M	CO2	BTL3
	b	Explain the classification and applications of super	5M	CO2	BTL2
		capacitors.	21/1	002	טועב
		UNIT-III			
6	a	Explain the derivation of Nernst equation.	5M	CO3	BTL2
	b	Discuss the conductometric titrations of strong acid vs	5M	CO3	BTL2
		strong base.			
		OR		1	
7	а	Explain the construction and working principle of H ₂ -O ₂ fuel cell.	5M	CO3	BTL2
	b	Explain the construction and working principle of Li-ion	5M	CO3	BTL2

SET-1

	UNIT-IV									
8	а	Differentiate the thermoplastics and thermosetting plastics.	5M	CO4	BTL2					
	b	Explain the preparation, properties and applications of Buna-S rubber.	CO4	BTL3						
		OR								
9	а	Explain the preparation and applications of Bakelite.	5M	CO4	BTL3					
	b	Explain the mechanism of conduction and application of poly acetylene.	5M	CO4	BTL2					
		UNIT-V		•						
10	а	Explain the instrumentation of UV-Visible spectroscopy.	5M	CO5	BTL2					
	b	What are the electronic transitions of UV-Visible spectroscopy?	5M	CO5	BTL1					
		OR								
11	а	Explain the instrumentation of IR spectroscopy.	5M	CO5	BTL2					
	b	Discuss the applications of HPLC?	5M	CO5	BTL3					

CODE: A10001		R23		H.T.No:										
---------------------	--	-----	--	---------	--	--	--	--	--	--	--	--	--	--

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech I Year II Semester Regular Examinations MAY 2025

Subject Name: Communicative English

Time: 3 Hours Branch: ECE Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

	<u> </u>	Answer one full question from each unit in Part-B. Each full question PART-A	- Carri	00 10 1	1101110
1	а	Write O' Henry's views in The Gift of Magi.	2M	CO1	BTL1
	b	Define Scanning in Reading Skills.	2M	CO1	BTL5
	С	Explain the lines: "For men may come and men may go. But I go on forever."	2M	CO2	BTL1
	d	Write a short note on Homonyms and give two examples.	2M	CO2	BTL2
	e	What is the difference between summarizing and paraphrasing?	2M	CO3	BTL5
	f	Whether Self-awareness is helpful to intrapersonal communication. State your reasons.	2M	СОЗ	BTL1
	g	Classify types of data interpretation methods.	2M	CO4	BTL5
	h	Describe Elon Musk's childhood and Early entrepreneurship.	2M	CO4	BTL1
	i	Write a short paragraph on "Film and piracy industry".	2M	CO5	BTL4
	j	Explain different types of essays.	2M	CO5	BTL4
		PART-B			
		UNIT-I			
2	а	What moral lessons are stressed in the story "The Gift of the Magi"?	5M	CO1	BTL1
	b	Write the meaning of the root words: i) bene ii) dem iii) geo iv) omni v) phil	5M	CO1	BTL2
		OR			
3	а	Rewrite the jumbled sentences in the correct order. i) What do subjects you teach? ii) would like you go to back there? iii) Engineer my father an is. iv) is going son join to new a next company year. v) Monday in delhi begins on The National Film festival.	5M	CO1	BTL2
	b	Write a short note on the dilemma and financial condition of Della and Jim in The Gift of Magi.	5M	CO1	BTL1
		UNIT-II			
4		Define Homophones, Homonyms and Homographs with suitable examples.	10M	CO2	BTL2
		OR			
5	а	How does the poet use the brook to draw a parallel with a man's life?	5M	CO2	BTL1
	b	Compose a paragraph on "Social Media and the Youth".	5M	CO2	BTL4
		UNIT-III			

6	а	What is SpaceX, and what has been its impact on space	5M	CO3	BTL1
	1	exploration?	OIVI	000	DIDI
	b	Fill in the blanks with either 'be/have' form that agrees with the subject of the sentences in the following: i) Neither of my brothers any children. ii) The fourth innings of the match began. iii) Mathematics an interesting subject. iv) The shop, with all its goods, insured. v) Aditi is one of the girls who selected.	5M	CO3	BTL3
		OR			
7	а	How would you shorten the sentences while summarising a text?	5M	CO3	BTL5
	b	Choose the correct collocations from the below and fill in the blanks: (record time spare time precious time buy time			
		 i) Jyothi wasn't ready for the presentation. She tried to by requesting Rekha to go before her. ii) Krishna wasn't late. He came exactly at 9:30 AM - he was 	5M	CO3	BTL2
		iii) Leela spends all her helping others. iv) Tanya was so eager to finish that she got done in v) I can't spend my on trivial pursuits.			
		UNIT-IV			
8	a	What announcement by the National Peace Council does Elizabeth show her brother?	5M	CO4	BTL1
	b	Explain the differences between Bar graphs and Pie charts in representing data.	5M	CO4	BTL4
		OR			
9		Develop a dialogue using phrases while asking for and giving information for the given situation: "Ashmitha speaks to the receptionist to reserve a room at the Dolphin Hotel".	10M	CO4	BTL6
		UNIT-V			
10		How does intrapersonal communication help to overcome our daily challenges?	10M	CO5	BTL1
		OR			
11	a	Draft an expository essay on "The role of the youth in nation building".	5M	CO5	BTL4
	b	Correct errors in the following sentences. i) The girls sat down besides the lake. ii) They left in midnight to their village. iii) Among the two brothers, Sridhar is the best speaker. iv) The shop is under my flat. v) Manu has been living at Dubai since ten years.	5M	CO5	BTL3

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech I Year II Semester Regular & Supplementary Exams May - 2025

Subject Name: Differential Equations & Vector Calculus

Branch: Common for CSE and ECE

SET-1

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

		PART-A			
1	а	Define Linear differential Equation?	2M	CO1	BTL1
	b	State Newton's Law of cooling and Law of Growth.	2M	CO1	BTL1
	С	Solve (D ² -4D+4) y=0	2M	CO2	BTL2
	d	Solve particular of $(D^2 + 4)y = \sin 2x$	2M	CO2	BTL2
	e	Form PDE by eliminating arbitrary constants a and b from $z = (x^2 \mid a)(y^2 \mid b)$	2M	соз	BTL2
	f	Solve p+q=1	2M	CO3	BTL2
	g	Define Irrotational vector?	2M	CO4	BTL1
	h	Find div f for $f = z\vec{l} + x\vec{l} + y\vec{k}$.	2M	CO4	BTL1
	i	State Green's theorem in a plane.	2M	CO5	BTL1
	j	State the Gauss divergence theorem.	2M	CO5	BTL1
		PART-B			
		UNIT-I			
2	a	Solve $\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$	5M	CO1	BTL3
	b	Solve $2xydy - (x^2 + y^2 + 1)dx = 0$	5M	CO1	BTL3
	•	OR			
3		If the temperature of air is 25°C and the temperature of the body drops from 75°C to 65°C in 10 minutes. Determine when the temperature will be 55°C and also find the temperature after 20 minutes	10M	CO1	BTL4
		UNIT-II			
4	а	Solve $(D^3 + 2D^2 + D)y = e^{2x}$	5M	CO2	BTL3
	b	Solve $(D^2 + 1)y = x^3$	5M	CO2	BTL3
		OR			
5		Solve by the method of variation of parameters, $(D^2+a^2)y = Cosec$ ax	10 M	CO2	BTL3
		UNIT-III		1	
6	а	Form the PDE by eliminating the arbitrary functions form $z = f(x^2 + y^2 + z^2)$	5M	соз	BTL3

	b	Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$	5M	CO3	BTL3				
	OR								
7		Solve $(D^3 - 3D^2D' + 4D'^3)z = e^{x+2y}$	10M	CO3	BTL3				
	•	UNIT-IV							
8	а	Determine the directional derivative of the function							
		$f = xy + yz + zx$ in the direction of a vector $1^2 + 21^2 + 21^2$	5M	CO4	BTL3				
		at the point (1, 2, 0)	0111		2120				
	b	Determine curl \bar{f} , where $\bar{f} = \text{grad}(x^3 \mid y^3 \mid z^3 3xyz)$.	5M	CO4	BTL3				
	•	OR							
9		Show that the vector $(x^2 - yz) \overrightarrow{i} + (y^2 - zx) \overrightarrow{j} + (z^2 - xy) \overrightarrow{k}$	10M	CO4	BTL3				
		is irrotational and find its scalar potential.	TOM	CO4	BILO				
		UNIT-V							
10	а	Evaluate the work done in moving a particle in the force							
		field $\overline{F} = 3x^2\overline{i} + (2xz - y)\overline{j} + z\overline{k}$ along the straight line	5M	CO5	BTL5				
		from (0,0,0) to (2,1,3).							
	b	Evaluate $\int_C y^2 dx - 2x^2 dy$ along the parabola $y = x^2$ from	5M	CO5	BTL5				
		(0,0) to (2,4).	0111		BILO				
		OR							
11		Verify stokes theorem for $f = (x^2 + y^2)i - 2xyj$ taken	10M	CO5	BTL4				
		round the rectangle bounded by the lines	101.1		2121				
		$x-\pm a, y-0, y-b.$							

CODE: A10205	R23		H.T.No:						
		,					, ,	 1	

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN

Regular & (AUTONOMOUS) B.Tech I Year II Semester Supplementary Examinations June - 2025 Subject Name: NETWORK ANALYSIS

Branch: ECE

SET-1

Time: 3 Hours	Max. Marks: 70
---------------	----------------

		PART-A							
Answer all questions, each question carries two marks									
1	a	State Kirchhoff's current and voltage law.	2M	CO	BTL				
	b	State maximum power transfer theorem	2M	1	L1				
	c	What is meant by transient response?	2M	1	L1				
	d	$LT\{\cos \omega t\} =$	2M	2	L2				
	e	Define RMS value and Average value	2M	2	L1				
	f	What is meant by super mesh?	2M	3	L1				
	g	Define Flux density	2M	3	L2				
	h	Define Self-inductance	2M	4	L1				
	i	State the relationship between different parameter sets in	2M	4	L1				
		two-port networks	03.5						
	J	Define Two port network with an example?	2M	5	L2				
		Answer all three units, 05 X 10 = 50 Marks							
2	_	UNIT-I State and explain Theyenin's theorem with an example	5M	CO1	BTL2				
4	a b	State and explain Thevenin's theorem with an example. Determine the currents i ₁ and i ₂ in the circuit shown	SIVI	COI	B1L2				
	ט	below							
		Program (production)							
		14 Ω 10 Ω							
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5M	CO1	BTL2				
		$6 \text{ V} \xrightarrow{(+)} (-1)^{5 \text{ V}}$							
		$6V \stackrel{\leftarrow}{\downarrow} i_1 $ $\geq 50 \stackrel{\leftarrow}{\downarrow} 5V$							
		3"							
	OR								
3	а	State and explain Super position theorem	4M	CO1	BTL3				
	b	Obtain the current I in the network shown by Super							
		Position Theorem.							
		I							
		5Ω							
		2A + 552	614	CO1	DTI 4				
		30 \ ()4V +	6M	CO1	BTL4				
		3Ω ≸							
		V _R ₹ 2Ω							
		VR ₋ ≹ ^{2Ω}							
		UNIT-II							
4	а	Derive the transient response of a series RL circuit for AC	10M	CO1	BTL3				
		Excitation and draw the response of the curve?	10101	001	סמום				
	,	OR	1	ı	1				
5	a	In a series RLC circuit, $R = 16\Omega$, $L=2.5mH$, and $c=1\mu F$. A	10M	CO1	BTL4				
		dc voltage of 40 V is applied at t=0. Obtain i(t).							
	UNIT-III								
6	а	Derive the steady state expression for the current	10M	CO2	BTL3				
		response in RLC series circuit with a sinusoidal Source							

		OR			
7	а	Explain about star to delta conversion	5M	CO2	BTL2
	b	A series RC circuit has R=10Ω, C=200μF, applied with 200	5M	CO2	BTL4
		sin314t. volts. Find the i(t) at steady state.	JIVI	CO2	DILT
		UNIT-IV		1	
8		What is the condition for frequency response?	2M		
		Derive the followings for series circuit	3M	CO2	DTI 2
		(i) Response frequency (ii) Half Power frequencies	3M	CO3	BTL3
		(iii) Band width	2 M		
		OR			
9	а	What is coupling coefficient? Derive the expression for it.	5M	CO3	BTL2
	b	Find the total inductance of the three series connected			
		couple coils in below If L1 = 1H, L2 = 2H, L3 = 5H			
		M12 = 0.5H, M23 = 1H, M13 = 1H			
		m12 m22			
		$\frac{\text{m12}}{\text{m23}}$			
		<u>.</u>	5M	CO3	BTL4
		i L1 L2 L3			
		m13			
		UNIT-V		l .	
10	а	Determine Z-parameters for network shown below?			
		2 2			
		· · · · · · · · · · · · · · · · · · ·			
			- 3.6	004	D
		\geqslant_1 \geqslant_1 \geqslant_1	5M	CO4	BTL4
		ullet $ullet$ $$			
		•			
	b	Express the Y parameters in terms of ABCD- parameters	5M	CO4	BTL2
		OR			
11	а	$I_1 \stackrel{2\Omega}{\longrightarrow} I_2$			
		~ ~ ` ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
		\uparrow \downarrow \uparrow			
		$\bigvee_{1} \stackrel{?}{\underset{\sim}{\xi}} 4\Omega \stackrel{?}{\underset{\sim}{\xi}} 5\Omega \stackrel{\checkmark}{\underset{\sim}{\xi}} 2$	5M	CO5	BTL4
		Υ ₁ ξ4Ω ξ ⁵ Ω Υ²			
		ام ا			
		Determine transmission line parameters			
	b	Given a two-port network with $h11=10\Omega$, $h12=0.5$,			
		h21=20, and h22=0.02mhos, determine the input and	= 3. //	COF	ртт 4
		output currents when the network is terminated with a	5M	CO5	BTL4
		load resistance RL=100Ω.			