CODE: A10201 R23 H.T.No:

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations June 2025

Subject Name: Basic Electrical & Electronics Engineering

Branch: ECE

Time: 3 Hours Max. Marks: 70

Note: Part A must be answered from page no 3-18 and Part B must be answered from 19-36 pages

		answered from 19-36 pages			
		PART-A (Electrical Engineering Part)			
	I	Answer all questions, each question carries one marks			
1	а	Define Low's law.	1M	CO1	L1
	b	Define the terms form factor?	1M	CO2	L1
	С	Define a Generator?	1M	CO2	L1
	d	What is the use of earthing?	1M	CO3	L1
	e	1 unit electrical energy is	1M	CO3	L1
		Answer all three units, 03 X 10 = 30 Marks			
		UNIT-I			
2	а	State and Verify superposition theorem with suitable example?	10M	CO1	L3
		OR			
3	a	Derive the Avarage value for a sine waveform.	5M	CO5	L3
	b	A series circuit having a resistance of 10ohm and an			
		inductance 25mH connected to a supply of 250V, 50hzs,	5M	CO2	L3
		determine Impedance, current, real power and power	JIVI	CO2	LO
		factor of the circuit?			
	1	UNIT-II		1	
4	a	Explain the principle of operation of DC	10M	CO2	L2
		transformer with neat diagram	10111	002	52
	1	OR		Г	
5	a	Explain construction and operating	10M	CO3	L2
		principle of PMMC type instruments.			
		UNIT-III		T	
6	a	Draw a neat schematic diagram of a hydel Power plant	10M	CO5	L4
		and explain the function of various components.			
	1	OR		T	
7	a	Explain the working principle of miniature circuit	5M	CO5	L2
		breaker (MCB) with neat diagram.	_		
	b	Define two part tariff and explain how you calculate	5M	CO4	L2
		electricity bill for domestic consumers.			
		PART-B (Electronics Engineering Part)	1		
0	I _	Answer all questions, each question carries one ma	arks		
8	a	Explain the significance of threshold voltage in forward characteristics of a n – p junction.	1M	CO1	L1
	b	Write the terminals of UJT.	1M	CO1	L1
			$\frac{1M}{1M}$	CO1	L1
	d d	Draw the locic gates with truth tables (i) AND (ii) NOP	1 M	CO1	L1
		Draw the logic gates with truth tables. (i).AND (ii). NOR		CO2	
	e	Explain the registers.	1M	COS	L1

		Answer all three units, 03 X 10 = 30 Marks			
		UNIT-I			
9	а	Draw the half wave rectifier and explain the operation with filter using neat diagrams	5M	CO4	L2
	b	Draw the full wave rectifier and explain operation.	5M	CO4	L2
		OR			
10	а	Draw and explain in detail about the input and output characteristics of n-p-n transistor in CE configuration.	10M	CO4	L2
		UNIT-II			
11	а	Explain the working of a full wave bridge rectifier with circuit diagram and input output waveforms	5M	CO4	L2
	b	Draw the block diagram of a public address system and explain its working.	5M	CO4	L2
		OR			
12	а	Draw the circuit diagram of common emitter amplifier and explain the operation in detail.	5M	CO5	L2
	b	Define the term amplifier and explain the operation of public addressing system with neat block diagram.	5M	CO5	L2
		UNIT-III			
13	а	Draw the circuit diagram of Serial Input Parallel Output and explain the operation.	5M	CO5	L2
	b	b) Explain BCD codes and Excess-3 codes with truth tables.	5M	CO6	L3
		OR			
14	а	Explain along with truth tables of Half Adder and Full adder.	10M	CO6	L2

CODE: A10003

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

R23

B.Tech I Year I Semester Supplementary Examinations June 2025

Subject Name: Engineering Physics Branch: ECE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

	⊒. 11	nswer one full question from each unit in Part-B. Each full question car. PART-A	1100 10 1	141110	
1	а	What is diffraction grating?	2M	CO1	L1
	b	What do you mean by Fraunhofer Diffraction?	2M	CO1	 L1
	c	State Bragg's law.	2M	CO2	L1
	d	State Bragg's law and extract its expression.	2M	CO2	 L1
	e	Define Dielectric Materials	2M	CO3	L2
	f	Write any two postulates of classical free electron theory.	2M	CO3	 L1
	g	State the Heisenberg uncertainty principle.	2M	CO4	 L1
	h	State permittivity and dielectric susceptibility.	2M	CO4	L1
	i	Define Fermi level for Semiconductor	2M	CO5	L1
	i	Define the terms: (i) drift (ii) diffusion.	2M	CO5	L1
	<u> </u>	PART-B		l.	
		UNIT-I			
2	а	Explain how Newton's rings are formed in the reflected light.			
		Derive the expressions for the diameters of dark and bright	10	CO1	L3
		rings.			
		OR			<u> </u>
3	а	Formulate Fraunhofer's diffraction at double slit.	6M	CO1	L4
	b	Derive polarized lights from quarter and half wave plates	4M	CO1	L4
		UNIT-II			
4	a	Explain how the determination of Crystal Structure is done by	7M	CO2	L2
		Lave's method.	7 171	002	
	b	Calculate the ratio d(100): d(110): d(111) for a simple cubic	3M	CO2	L3
		structure.	0111	002	
	1	OR		г	
5	а	Describe with suitable diagram, the powder method for	10M	CO2	L3
		determination of crystal structure.			
	_	UNIT-III			
6	a	Explain the phenomenon of electronic polarization and derive	10M	CO3	L2
		an expression for the electronic polarizability.			
7		OR	EM	CO2	τ ο
7	a	Categorize magnetic materials.	5M	CO3	L2
	b	Explain hysteresis of ferromagnetism and breakdown hard	5M	CO3	L2
		and soft magnetic materials. UNIT-IV			
8	а	Explain De Broglie's Hypothesis and its significance in the			
J	a	context of matter waves.	6M	CO4	L2
	b	State quantum free electron theory assumptions. Obtain			
		conductivity equation.	4M	CO4	L2
	1	OR			
9	а	State de Broglie's theory and significance of wave function.	7M	CO4	L5
-	b	Calculate the velocity and kinetic energy of an electron of			
		wavelength 1.66×10-10m.	3M	CO4	L4
	1	UNIT-V		ı	
10	а	Derive an expression for Hall Coefficient and Hall Mobility.	5M	CO5	L3
-	b	Derive conductivity of a semiconductor from drift and diffusion			
		current densities.	5M	CO5	L5
		OR		<u>ı</u>	
		OK .			
11		Derive an expression for density of holes in valance band of	10M	CO5	L3

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B. Tech I Year I Semester Supplementary Examinations JUNE 2025

Subject Name: Engineering Graphics

Branch: ECE Time: 3 Hours Max. Marks: 70

Instructions:

1	. Answer one full question from each unit. Each full question carries	s 14 ma	rks	
	UNIT-I			
1	Draw a hypo cycloid of a circle of 50 mm diameter, which rolls inside another circle of 180 mm diameter for one revolution counterclockwise.	10M	CO1	BTL2
	OR			
2	Draw the involute of Hexagon also draw a normal and tangent to the point 120mm normal and from the centre of Hexagon.	10M	CO1	BTL2
	UNIT-II			
3	The front view of a line, inclined at 30° to the V.P. is 65mm long. Draw the projection of the line, when it is parallel to and 40 mm above the VP, its one end being 30 mm in front of the V.P	10M	CO2	BTL2
	OR			
4	Draw the projections of the following points on the same ground line, keeping the Projectors 20mm apart. (a) Point A, 20mm above the H.P. and 30mm in front of the V.P. (b) Point B, on the H.P. and 40mm in front of the V.P. (c) Point C, 15mm above the H.P. and in the V.P. (d) Point D,15mm above the H.P. and 50mm behind the V.P.	10M	CO2	BTL2
	UNIT-III			
5	A square prism base 40 mm side and height 65 mm, has its axis inclined 45° to ground and has an edge of its base on the ground and inclined at 30° to the V.P. Draw its projections.	10M	CO3	BTL2
	OR			
6	Draw the projections of a pentagonal prism of base 25mm side and axis 50mm long, when it is resting on one of its rectangular faces on H.P. The axis of the solid is inclined at 45° to V.P.	10M	СОЗ	BTL2
	UNIT-IV			
7	A triangular pyramid resting on HP with one of its base edge perpendicular to VP with a side of 42mm and axis length of 65mm. A section plane passing through the mid-point of the axis and parallel to HP. Draw the sectional Top View and Front View of the pyramid.	10M	CO4	BTL2
	OR			
		·		·

	,			
8	A pentagonal pyramid of base side 30mm and axis 60mm long is resting on its base on HP with an edge of the base perpendicular to VP. Draw the development of the pyramid.	10M	CO4	BTL2
	UNIT-V			
9	Draw an isometric view of a Pentagon, with a 40 mm base diameter and a 60 mm long axes. When axes is (i) vertical. (ii) Horizontal.	10M	CO5	BTL2
	OR			
10	Draw the front view, top view and right-side view of the object shown below (dimensions in mm).	10M	CO5	BTL2

CODE: A10501		R23		H.T.No:									
---------------------	--	-----	--	---------	--	--	--	--	--	--	--	--	--

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN

(AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations June 2025

Subject Name: Introduction to Programming

SET-1

Branch: CSE and ECE

Time: 3 Hours Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10 marks

		PART-A			
1	_	What is the difference between compilation and	2M	CO1	BTL2
	a	interpretation in programming?			
	b	List different format specifiers.	2M	CO1	BTL1
	С	List the various conditional control statements in C.	2M	CO1	BTL1
	4	What is the purpose of the do-while loop. How is it	2M	CO2	BTL2
	d	different from the while loop?			
		In the memory model, how the two-dimensional arrays	2M	CO2	BTL2
	е	stored? Provide an example.			
	f	If str [] = "Welcome to the world of programming", then	2M	CO3	BTL1
	1	SUBSTRING (str, 15, 5) =?			
	ď	What is the difference between the address-of operator (&)	2M	CO3	BTL2
	g	and the dereference operator (*) in C. Provide an example.			
	h	Define a Structure. How can you access the members of a	2M	CO4	BTL1
	11	structure?			
	i	What are formal and actual parameters in a function call?	2M	CO4	BTL2
	•	Provide an example.		00:	
	j	What is the use of fseek() function in files and Write its	2M	CO4	BTL1
	J	syntax.			
		PART-B			
		UNIT-I	53.6	001	D/III O
2	a	Explain the basic components of a computer's	5M	CO1	BTL2
	1.	architecture.		001	DATE O
	b	What is an operator? List and explain various types of	5M	CO1	BTL2
		operators OR			
3		Draw a flowchart to find the sum of first n natural	5M	CO1	BTL3
3	a	numbers.	SIVI	COI	DILO
	b	Discuss the concept of type conversion in programming.	5M	CO1	BTL2
	ט	Explain the difference between implicit and explicit type	2111	COI	טועע
		conversion, and give examples.			
		UNIT-II		1	
4	а	Write a C program to simulate a calculator using switch	5M	CO2	BTL2
	-	case.	0111		
	b	Write a C program to find the GCD of two positive	5M	CO2	BTL3
		numbers.			
		OR		1	<u> </u>
5	а	Define looping. Explain for() loop with syntax and an	5M	CO2	BTL4
		example.	- '		
		-		1	

	b	Illustrate the use of break and continue statements with	5M	CO2	BTL4					
		an example.								
UNIT-III										
6	a	Write a C program to find the minimum and maximum element of a 1-D integer array.	5M	CO3	BTL3					
	b	Write a C program for multiplication two matrices.	5M	CO3	BTL3					
		OR								
7	a	Write a C program to concatenate two strings without built-in functions.	5M	CO3	BTL4					
	b	Explain about any 5 string handling functions.	5M	CO3	BTL2					
	~	UNIT-IV	02:12							
8	а	Write a C program to implement realloc().	5M	CO4	BTL3					
Ū	b	Write a C program that uses pointers to reverse an array	5M	CO4	BTL3					
	~	of integers.	0111		2120					
		OR								
9	а	Write a C program to find the total, average of n students	5M	CO4	BTL3					
		using structures.								
	b	Write a C program to illustrate the comparison and	5M	CO4	BTL4					
		copying of structure variables								
		UNIT-V								
10	a	How are arguments passed to a function in C? Explain the	5M	CO5	BTL4					
		difference between passing by value and passing by								
		reference.								
	b	Write a C function to transpose of a matrix.	5M	CO4	BTL2					
		OR								
11	а	Explain the difference between the scope and lifetime of	5M	CO5	BTL4					
		variables in C. How do local, global, and static variables								
		differ in terms of scope and lifetime?								
	b	Write a C program to copy the content of one file to another file.	5M	CO4	BTL3					
		anomer me.								

CODE: A10002 **R23** H.T.No:

RAVINDRA COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations June 2025

Subject Name: Linear Algebra and Calculus

Time: 3 Hours Branch: CSE & ECE Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks
2. Answer one full question from each unit in Part-B. Each full question of

	2.	Answer one full question from each unit in Part-B. Each full question	carries	10 ma	rks
		PART-A			
1	а	Find the rank of the matrix $\begin{bmatrix} 2 & 1 & -1 \\ -1 & -3 & 4 \\ 1 & -3 & 8 \end{bmatrix}$	2M	CO1	LI
	b	Write about Gauss Seidel Iteration method.	2M	CO1	L2
	С	Find the symmetric matrix corresponding to the quadratic form $x^2 + 2y^2 + 3z^2 + 4xy + 5yz + 6zx$	2M	CO2	LI
	d	Write the procedure about Diagonalization of a matrix	2M	CO2	LI
	е	Write the Maclaurin's series expansion in powers of x	2M	CO3	LI
	f	Verify Lagrange's mean value theorem for $f(x) = x^{1/3}$ in $[-1,1]$	2M	соз	LI
	g	Define Total derivative for three variables	2M	CO4	LI
	h	Find the Stationary points of $f(x,y) = \sin x + \sin (x + y)$	2M	CO4	LI
	i	Find the value of the integral $\int_0^2 \int_0^y x^3 y dx dy$	2M	CO5	LI
	j	Transform the integral into polar coordinates, $\int_0^a \int_0^{\sqrt{a^2-x^2}} (x^2+y^2) \ dy \ dx$	2M	CO5	LI
		PART-B			
		UNIT-I			
2	а	Reduce the matrix A to normal form and hence find its rank A= $\begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$	5M	CO1	L1
	b	b) Solve $20x+2y+6z=28$, $x+20y+9z=-23$, $2x-7y-20z=-57$ by Gauss-Seidel Iteration Method	5M	CO1	L3
		OR			
3	а	Solve the system of equations 5x+3y+7z=4,3x+26y+2z=9,7x+2y+10z=5	5M	CO1	L5
	b	a) Solve the system of equations x+2y+3z=1,2x+3y+8z=2,x+y+z=3	5M	CO1	L6
	1	UNIT-II			
4		Define Diagonalization method and Hence Diagonalize $\begin{bmatrix} 8 & 6 & -2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	10M	CO2	L3
		OR			
5	a	Verify Cayley-Hamilton theorem for the matrix	5M	CO2	L4

	1				
		1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		$A=\begin{bmatrix} 0 & 1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$ and hence find its inverse.			
	b	Reduce the Quadratic Form			
		$x^2 + 3y^2 + 3z^2 - 2yz$ to the canonical form by Orthogonal			
		Transformation and also find its Rank, Index Signature and	5M	CO2	L5
		Nature of Quadratic Form			
	l	UNIT-III			
6	а	Verify Rolle's theorem for the function $f(x) = x^2 - 2x - 3$ in the		СО	T 4
		interval [1,3]	5M	3	L4
	b	Verify Cauchy's mean value theorem for $f(x) = \sin x$ and		СО	
		$g(x) = \cos x \text{ in } [0, \pi/2].$	5M	3	L4
		OR			
7		Verify Lagrange's mean value theorem for $f(x) = \cos x$ in $[0,\pi]$	5M	CO3	L5
	b	Verify the Taylors theorem $f(x) = (1-x)^{\frac{5}{2}}$ with Lagrange's form			
		of remainder upto 2 terms in the interval [0,1].	5M	CO3	L4
		UNIT-IV			
8	а	If $u = x + y + z$, $y + z = uv$, $z = uvw$, Show that $J\left(\frac{x,y,z}{u,v,w}\right) = u^2v$.	5M	CO4	L5
	b	Find the maxima and minima of the function		004	т 1
		$u(x,y) = x^{3}y^{2}(1-x-y)$	5M	CO4	L1
		OR			
9	а	Verify $u = \frac{x^2 - y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent or not? If			
			10M	CO4	L5
		dependent then find the relation between them.			
	I	UNIT-V		<u> </u>	
10		Solve $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dx dy dz$	5M	CO5	L5
	b	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dz dy dx$	5M	CO5	L5
		OR			
11	. A	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dz dy dx$	5M	CO5	L1
	b	Find the volume bounded by the xy-plane $x^2 + y^2 = 1$ and the plane $x + y + z = 3$.	5M	CO5	L1
		pranc x + y + z = 3.			