P R

UNIT 1

CONVENTIONAL SOFTWARE
MANAGEMENT

AR B

/’ —

The Waterfall model

The waterfall model is also called as
linear sequential model or classic life
cycle model.

This section examines and critiques the
water fall theory, then looks at how most
of the industry has practices the
conventional software process.

/ —

In Theory:

There are two essential steps common to the
development of computer programs: analysis and
coding.

In order to manage and control software development
including system requirements definition, software
requirements definition, program design, and testing.
These steps supplement the analysis and coding steps.

The basic frame is risky and invites failures.

The following are 5 improvements to

the basic water

fall process to eliminate the development risks.

1) Program design comes first:

Insert a preliminary program design phase
between the software requirements

generation phase and the ana
The insufficient resources anc

ysis phase.
| the design

limitations are then identifiec
stages

 in the early

Begin the design process with program designers, not
analysts or programmers.

Allocate processing functions, design the database,
allocate execution time, define interfaces and
processing modes with the operating system, describe
input and output processing, and define preliminary
operating procedures.

Write an overview document that is understandable,
informative, and correct.

» e

=

2)Document the design

We know that document design is required a lot for
software programs

Each designer must communicate with interfacing
designers, managers, and possibly customers.

During early phases, the documentation is the
design.

The real value of documentation is to support later
changes by a separate test team, a separate
maintenance team, and operations personnel who
are not software literate.

-3) Do it twice if possible:

The software delivered to the customer for
operational purpose is actually the second version
after considering critical design and operational
i1ssues.

In the first version, the team must have a special
broad competence where they can quickly sense
trouble spots in the design, model them, model
alternatives.

4)Plan, control and monitor testing

The combination of manpower, computer
time and management is called the test
phase.

This phase has greater risk in terms of cost
and schedule

The following are the important things in test phase:

1. Employ a team of test specialists who were not
responsible for the original design;

2. Employ visual inspections to spot the obvious
errors

3. Test every logic path
4. Employ the final checkout on the target computer.

/

5)Involve the customer:

[t is important to involve the customer in a formal way
so that he has committed himself at earlier points
before final delivery.

These include a "preliminary software review"
following the preliminary program design step, a
sequence of "critical software design reviews" during

program design, and a "final software acceptance
review" after testing is performed.

/’ —

=

In practice

Some software projects still follow the conventional
software management process

The characteristics of conventional model are:
1. Protracted integration and late design breakage
2. Late risk resolution
3.Requirements-driven functional decomposition
4.Adversarial stakeholder relationships

5.Focus on documents and review meetings

~ 1)Protra ctedm

design breakage

100% Irinratan -
beging T T T——1
f !

i

3

=

i

af

L

E Original

farge; dte

A 5 A

Early success via paper designs and thorough briefings.
Commitment to code late in the life cycle.

Heavy budget and schedule pressure to get the system
working.

Late response of non optimal fixes, with no time for
redesign.

A very delicate, unmaintainable product delivered late.

In conventional approach the use of immature
languages and technologies is difficult to understand
the software project design and to change it in future.

In the conventional model, the entire system was
designed on paper, then implemented all at once, then
integrated.

Here we perform system testing at the end of the
process to check the fundamental architecture is good
Or not.

2)Late Risk Resolution

A serious issue associated with the
waterfall lifecycle was the lack of early
risk resolution.

* The following diagram shows risk profile
for conventional model projects covers four

distinct periods.

Requirements | Design— Coding @ Integation Testing >

Focused Risk = Controlled Risk

Resolution - Management
Period . Pering

Risk Exploration © Risk Elaboration
Period . Peiod

Early in the life cycle, as the requirements were being
specified, the actual risk exposure was highly
unpredictable.

After a design concept available even on paper, risk
exposure stabilized.

In the next step, after the system was coded some of
the individual component risks was resolved.

When the integration begins the real system risks are
touchable.

/ |

: 7 -/
—3.Requirements-driven functional
decomposition

The software development process has been
requirements driven.

We should present precise requirements definition
and then implement exactly those requirements.

We should treat all the requirements are equally
important.

Requirement specification is an important and difficut
job in the development process.

y ° /
“A-Adversarial stake holder

Relationship

The contractor prepared a draft contract-deliverable
document and delivered it to the customer for
approval.

The customer was expected to provide comments

The contractor incorporated these comments and
submitted a final version for approval.

/
\\

“5.Focus on documents and Review
meetings

The conventional software development process
focused on producing various documents that
attempted to describe the software product.

Here formal meetings were conducted to exchange
specific documents.

The developers produce tons of papers to describe the
project progress to the customers rather than to reduce
risk and produce quality software.

~Conventional software
management process

Barry boehm describes the objective characterization of
the state of software development.

1) Finding and fixing a software problem after delivery
costs 100 times more than finding and fixing the
problem in early design phases

2) You can compress software development schedules
25% of normal, but no more

3) For every $1 you spend on development, you will
spend $2 on maintenance

4) Software development and maintenance costs are
primarily a function of the number of source lines of
code.

5) Variations among people account for the biggest
differences in software productivity

6) The overall ratio of software to hardware costs is still
growing. In 1955 it was 15:85; in 1985, 85:15.

7) Only about 15% of software development effort is
devoted to programming.

8) Software systems and products typically cost 3 times
as much per SLOC as individual software programs.

9) Walkthroughs catch 60% of the errors

10) 80% of the contribution comes from 20% of the
contributors

80% of the engineering is consumed by 20% of the
requirements

80% of the software cost is consumed by 20% of the
components

80% of the errors are caused by 20% of the
components

80% of software scrap and rework is caused by 20% of
the errors

80% of the progress is made by 20% of the people

/ e

,/V

Software economics

Most software cost models can be described five
parameters : size, process, personnel, environment
and required quality.

1) The size of the end product which is typically
measured in terms of the number of source lines or the
number of function points developed to achieve the
required functionality.

2) The process used to produce the end product, the
ability of the process is to avoid non value adding
activities

3) The capabilities of software engineering personnel,
and particularly their experience with the computer

science issues and the applications domain issues of
the project

4) The environment, which is made up of the tools and

techniques available to support efficient software
development and to automate the process

5) The required quality of the product, including its
features, performance, reliability, and adaptability

The following equation shows the relation ship
between size, process, personnel, environment, quality
parameters and between the estimated cost

Effort = (Personnel) (Environment) (Quality) (
Sizeprocess)

Here one important feature of software economics is
the relationship between effort and size exhibits is a

diseconomy of scale.

It indicates that more software we build it consumes
more expensive per unit of the software.

So the per line cost of smaller applications is less than
for the larger applications.

The following diagram shows 3 generations software
economics in the form of basic technology
advancement in tools, components and processes.

Software Size

- 1960s~1970s

- Waterfall model

- Functional design

- Diseconomy of scale

- 1980s~1990s

- Process impovement
- Encapsulation-based
- Diseconomy of scale

- 2000 and on

- lterative development
- Component-based

- Return on investment

Corresponding environmént, size, and process technol:ogies

Conventional

Transition

Modern Practices

Environments/tools:

Environment/tools:

Environment/tools:

Custom Off-the-shelf, separate Off-the-shelf, integrated
Size: Size: Size:
30% component-based 70% component-based
100% custom 70% custom 30% custom
Process: Process: Process:
Ad hoc Repeatable Managed/measured
Typical project perl‘ormaﬁce
Predictably bad 2 Unpredictable Predictable
Always; Infrequently: Usually:
Over budget On budget On budget

Over schedule
FIGURE 2-1.

On schedule

On schedule

Three generations of software econorics leading to the target objective

The phases represents the life cycle of software
business in the organization. so we can define the
three generations of software development as follows:

1.Conventional:

The software is developed in conventional manner
between 1960 and 197o0.

Organizations used custom tools, custom processes,
and virtually custom components built in primitive
languages

Here the performance of the project is highly
predictable and cost, schedule and quality objectives
were always under archieved

2. Transition:

This is middle age of the software development which is
between 1980 and 1990.

At this time some software engineering principles are
formed and organizations used repeatable and off the shelf
tools.

During this phase custom components are built in
higher level languages and Some of the components
were available commercially such as operating system,
database management system, networking, and
graphical user interface.

3.Modern practices :

This phase of software development process started in
year 2000 and later.

In this phase software development is treated as
production.

Here we use integrated automation environments, off
the shelf components.

//
P —

/

Pragmatic software cost estimation

One critical problem in software cost estimation is a
lack of well-documented case studies of projects that
used an iterative development approach.

Software industry has inconsistently defined metrics
or atomic units of measure the data.

It is hard enough to collect a homogeneous set of
project data within one organization with different
processes, languages, domains, and so on.

There have been many debates among developers and
vendors of software cost estimation models and tools.

1. Which cost estimation model to use?

2. Whether to measure software size in source lines of
code or function points.

3. What constitutes a good estimate?

There are several popular cost estimation models

COCOMO is also one of the most open and well
documented cost estimation models.

SLOC worked well in applications that were
predominantly custom built & SLOC measurement
was easy to automate.

Most real-world use of cost models is bottom-up
rather than top-down.

A good estimate has the following attributes:

It is conceived and supported by the project manager,
architecture team, development team, and test team

accountable for performing the work
It is accepted by all the stake holders.

