UNIT 3: DOMAIN TESTING

1. Domains and Paths:
 INTRODUCTION:

> Domain:In mathematics, domain is a set of possible values of an independant variable or the variables of a function.
> Programs as input data classifiers: domain testing attempts to determine whether the classification is or is not correct.
> Domain testing can be based on specifications or equivalent implementation information.
> If domain testing is based on specifications, it is a functional test technique.
$>$ If domain testing is based implementation details, it is a structural test technique.
> For example, you're doing domain testing when you check extreme values of an input variable.

All inputs to a program can be considered as if they are numbers. For example, a character string can be treated as a number by concatenating bits and looking at them as if they were a binary integer. This is the view in domain testing, which is why this strategy has a mathematical flavor.

THE MODEL: The following figure is a schematic representation of domain testing.

Before doing whatever it does, a routine must classify the input and set it moving on the right path.
An invalid input (e.g., value too big) is just a special processing case called 'reject'.
The input then passses to a hypothetical subroutine rather than on calculations.
In domain testing, we focus on the classification aspect of the routine rather than on the calculations.

Structural knowledge is not needed for this model - only a consistent, complete specification of input values for each case.
We can infer that for each case there must be atleast one path to process that case.

- A DOMAIN IS A SET:

An input domain is a set.
If the source language supports set definitions (E.g. PASCAL set types and C enumerated types) less testing is needed because the compiler does much of it for us.
Domain testing does not work well with arbitrary discrete sets of data objects.
Domain for a loop-free program corresponds to a set of numbers defined over the input vector.

DOMAINS, PATHS AND PREDICATES:

In domain testing, predicates are assumed to be interpreted in terms of input vector variables.
If domain testing is applied to structure, then predicate interpretation must be based on actual paths through the routine - that is, based on the implementation control flowgraph.
Conversely, if domain testing is applied to specifications, interpretation is based on a specified data flowgraph for the routine; but usually, as is the nature of specifications, no interpretation is needed because the domains are specified directly.
For every domain, there is at least one path through the routine.
There may be more than one path if the domain consists of disconnected parts or if the domain is defined by the union of two or more domains.
Domains are defined their boundaries. Domain boundaries are also where most domain bugs occur.
For every boundary there is at least one predicate that specifies what numbers belong to the domain and what numbers don't.

For example, in the statement IF $\mathrm{x}>0$ THEN ALPHA ELSE BETA we know that numbers greater than zero belong to ALPHA processing domain(s) while zero and smaller numbers belong to BETA domain(s).
A domain may have one or more boundaries - no matter how many variables define it.

For example, if the predicate is $\mathrm{x} 2+\mathrm{y} 2<16$, the domain is the inside of a circle of radius 4 about the origin. Similarly, we could define a spherical domain with one boundary but in three variables.
Domains are usually defined by many boundary segments and therefore by many predicates. i.e. the set of interpreted predicates traversed on that path (i.e., the path's predicate expression) defines the domain's boundaries.

A DOMAIN CLOSURE:

A domain boundary is closed with respect to a domain if the points on the boundary belong to the domain.
If the boundary points belong to some other domain, the boundary is said to be open. Figure 4.2 shows three situations for a one-dimensional domain - i.e., a domain defined over one input variable; call it x
The importance of domain closure is that incorrect closure bugs are frequent domain bugs. For example, $x>=0$ when $x>0$ was intended.

(a) Both Sides Closed

Every input variable adds one dimension to the domain.
One variable defines domains on a number line.
Two variables define planar domains.
Three variables define solid domains.
Every new predicate slices through previously defined domains and cuts them in half.
Every boundary slices through the input vector space with a dimensionality which is less than the dimensionality of the space.
Thus, planes are cut by lines and points, volumes by planes, lines and points and nspaces by hyperplanes.

BUG ASSUMPTION:

The bug assumption for the domain testing is that processing is okay but the domain definition is wrong.
An incorrectly implemented domain means that boundaries are wrong, which may in turn mean that control flow predicates are wrong.
Many different bugs can result in domain errors. Some of them are:

Domain Errors:

- Double Zero Representation :In computers or Languages that have a distinct positive and negative zero, boundary errors for negative zero are common.
- Floating point zero check:A floating point number can equal zero only if the previous definition of that number set it to zero or if it is subtracted from it self or multiplied by zero. So the floating point zero check to be done against a epsilon value.
- Contradictory domains:An implemented domain can never be ambiguous or contradictory, but a specified domain can. A contradictory domain specification means that at least two supposedly distinct domains overlap.
- Ambiguous domains:Ambiguous domains means that union of the domains is incomplete. That is there are missing domains or holes in the specified domains. Not specifying what happens to points on the domain boundary is a common ambiguity.
- Overspecified Domains:he domain can be overloaded with so many conditions that the result is a null domain. Another way to put it is to say that the domain's path is unachievable.
- Boundary Errors:Errors caused in and around the boundary of a domain. Example, boundary closure bug, shifted, tilted, missing, extra boundary.
- Closure Reversal: A common bug. The predicate is defined in terms of $>=$. The programmer chooses to implement the logical complement and incorrectly uses <= for the new predicate; i.e., $\mathrm{x}>=0$ is incorrectly negated as $\mathrm{x}<=0$, thereby shifting boundary values to adjacent domains.
- Faulty Logic:Compound predicates (especially) are subject to faulty logic transformations and improper simplification. If the predicates define domain boundaries, all kinds of domain bugs can result from faulty logic manipulations.
$>$ RESTRICTIONS TO DOMAIN TESTING:Domain testing has restrictions, as do other testing techniques. Some of them include:

Co-incidental Correctness:Domain testing isn't good at finding bugs for which the outcome is correct for the wrong reasons. If we're plagued by coincidental correctness we may misjudge an incorrect boundary. Note that this implies weakness for domain testing when dealing with routines that have binary outcomes (i.e., TRUE/FALSE)

Representative Outcome:Domain testing is an example of partition testing. Partition-testing strategies divide the program's input space into domains such that all inputs within a domain are equivalent (not equal, but equivalent) in the sense that any input represents all inputs in that domain. If the selected input is shown to be correct by a test, then processing is presumed correct, and therefore all inputs within that domain are expected (perhaps unjustifiably) to be correct. Most test techniques,
functional or structural, fall under partition testing and therefore make this representative outcome assumption. For example, x^{2} and 2^{x} are equal for $\mathrm{x}=2$, but the functions are different. The functional differences between adjacent domains are usually simple, such as $x+7$ versus $x+9$, rather than x^{2} versus 2^{x}.
Simple Domain Boundaries and Compound Predicates:Compound predicates in which each part of the predicate specifies a different boundary are not a problem: for example, $\mathrm{x}>=0$ AND $\mathrm{x}<17$, just specifies two domain boundaries by one compound predicate. As an example of a compound predicate that specifies one boundary, consider: $\mathrm{x}=0$ AND $\mathrm{y}>=7$ AND $\mathrm{y}<=14$. This predicate specifies one boundary equation $(x=0)$ but alternates closure, putting it in one or the other domain depending on whether $\mathrm{y}<7$ or $\mathrm{y}>14$. Treat compound predicates with respect because they're more complicated than they seem.
Functional Homogeneity of Bugs: Whatever the bug is, it will not change the functional form of the boundary predicate. For example, if the predicate is $a x>=b$, the bug will be in the value of a or b but it will not change the predicate to $a x>=b$, say. Linear Vector Space:Most papers on domain testing, assume linear boundaries not a bad assumption because in practice most boundary predicates are linear.
Loop Free Software:Loops are problematic for domain testing. The trouble with loops is that each iteration can result in a different predicate expression (after interpretation), which means a possible domain boundary change.

2. Nice \& Ugly Domains:

NICE DOMAINS:

Where does these domains come from?

Domains are and will be defined by an imperfect iterative process aimed at achieving (user, buyer, voter) satisfaction.
Implemented domains can't be incomplete or inconsistent. Every input will be processed (rejection is a process), possibly forever. Inconsistent domains will be made consistent. Conversely, specified domains can be incomplete and/or inconsistent. Incomplete in this context means that there are input vectors for which no path is specified, and inconsistent means that there are at least two contradictory specifications over the same segment of the input space.
Some important properties of nice domains are: Linear, Complete, Systematic, Orthogonal, Consistently closed, Convex and Simply connected.

To the extent that domains have these properties domain testing is easy as testing gets. The bug frequency is lesser for nice domain than for ugly domains.

Nice domain boundaries are defined by linear inequalities or equations.
The impact on testing stems from the fact that it takes only two points to determine a straight line and three points to determine a plane and in general $n+1$ points to determine a n -dimensional hyper plane.
In practice more than 99.99% of all boundary predicates are either linear or can be linearized by simple variable transformations.

$>$ COMPLETE BOUNDARIES:

Nice domain boundaries are complete in that they span the number space from plus to minus infinity in all dimensions.
Figure 4.4 shows some incomplete boundaries. Boundaries A and E have gaps.
Such boundaries can come about because the path that hypothetically corresponds to them is unachievable, because inputs are constrained in such a way that such values can't exist, because of compound predicates that define a single boundary, or because redundant predicates convert such boundary values into a null set.
The advantage of complete boundaries is that one set of tests is needed to confirm the boundary no matter how many domains it bounds.
If the boundary is chopped up and has holes in it, then every segment of that boundary must be tested for every domain it bounds.

CLOSURE CONSISTENCY:

Figure 4.6 shows another desirable domain property: boundary closures are consistent and systematic.
The shaded areas on the boundary denote that the boundary belongs to the domain in which the shading lies - e.g., the boundary lines belong to the domains on the right. Consistent closure means that there is a simple pattern to the closures - for example, using the same relational operator for all boundaries of a set of parallel boundaries.
$>$

CONVEX:

A geometric figure (in any number of dimensions) is convex if you can take two arbitrary points on any two different boundaries, join them by a line and all points on that line lie within the figure.
Nice domains are convex; dirty domains aren't.
You can smell a suspected concavity when you see phrases such as: ". . . except if . . .," "However . . .," ". . . but not. . . ." In programming, it's often the buts in the specification that kill you.

SIMPLY CONNECTED:

Nice domains are simply connected; that is, they are in one piece rather than pieces all over the place interspersed with other domains.
Simple connectivity is a weaker requirement than convexity; if a domain is convex it is simply connected, but not vice versa.
Consider domain boundaries defined by a compound predicate of the (boolean) form ABC. Say that the input space is divided into two domains, one defined by ABC and, therefore, the other defined by its negation.
For example, suppose we define valid numbers as those lying between 10 and 17 inclusive. The invalid numbers are the disconnected domain consisting of numbers less than 10 and greater than 17.
Simple connectivity, especially for default cases, may be impossible.

UGLY DOMAINS:

Some domains are born ugly and some are uglified by bad specifications.
Every simplification of ugly domains by programmers can be either good or bad.
Programmers in search of nice solutions will "simplify" essential complexity out of existence. Testers in search of brilliant insights will be blind to essential complexity and therefore miss important cases.
If the ugliness results from bad specifications and the programmer's simplification is harmless, then the programmer has made ugly good.
But if the domain's complexity is essential (e.g., the income tax code), such "simplifications" constitute bugs.
Nonlinear boundaries are so rare in ordinary programming that there's no information on how programmers might "correct" such boundaries if they're essential.

- AMBIGUITIES AND CONTRADICTIONS:

Domain ambiguities are holes in the input space.
The holes may lie with in the domains or in cracks between domains.

3. Domain Testing:

DOMAIN TESTING STRATEGY: The domain-testing strategy is simple, although possibly tedious (slow).

1. Domains are defined by their boundaries; therefore, domain testing concentrates test points on or near boundaries.
2. Classify what can go wrong with boundaries, then define a test strategy for each case. Pick enough points to test for all recognized kinds of boundary errors.
3. Because every boundary serves at least two different domains, test points used to check one domain can also be used to check adjacent domains. Remove redundant test points.
4. Run the tests and by posttest analysis (the tedious part) determine if any boundaries are faulty and if so, how.
5. Run enough tests to verify every boundary of every domain.

$>$ DOMAIN BUGS AND HOW TO TEST FOR THEM:

An interior point (Figure 4.10) is a point in the domain such that all points within an arbitrarily small distance (called an epsilon neighborhood) are also in the domain.
A boundary point is one such that within an epsilon neighborhood there are points both in the domain and not in the domain.
An extreme point is a point that does not lie between any two other arbitrary but distinct points of a (convex) domain.

An on point is a point on the boundary.
$>$ If the domain boundary is closed, an off point is a point near the boundary but in the adjacent domain.
$>$ If the boundary is open, an off point is a point near the boundary but in the domain being tested; see Figure 4.11. You can remember this by the acronym COOOOI: Closed Off Outside, Open Off Inside.

EPSILON NEIGHBORHOOD
PROCEDURE FOR TESTING: The procedure is conceptually is straight forward. It can be done by hand for two dimensions and for a few domains and practically impossible for more than two variables.

1. Identify input variables.
2. Identify variable which appear in domain defining predicates, such as control flow predicates.
3. Interpret all domain predicates in terms of input variables.
4. For p binary predicates, there are at most 2^{p} combinations of TRUE-FALSE values and therefore, at most 2^{p} domains. Find the set of all non null domains. The result is a boolean expression in the predicates consisting a set of AND terms joined by OR's. For example $\mathrm{ABC}+\mathrm{DEF}+\mathrm{GHI}$. Where the capital letters denote predicates. Each product term is a set of linear inequality that defines a domain or a part of a multiply connected domains.
5. Solve these inequalities to find all the extreme points of each domain using any of the linear programming methods.

4. DOMAIN AND INTERFACE TESTING

$>$ INTRODUCTION:

Recall that we defined integration testing as testing the correctness of the interface between two otherwise correct components.
Components A and B have been demonstrated to satisfy their component tests, and as part of the act of integrating them we want to investigate possible inconsistencies across their interface.

Interface between any two components is considered as a subroutine call. We're looking for bugs in that "call" when we do interface testing. Let's assume that the call sequence is correct and that there are no type incompatibilities.
For a single variable, the domain span is the set of numbers between (and including) the smallest value and the largest value. For every input variable we want (at least): compatible domain spans and compatible closures (Compatible but need not be Equal).

$>$ DOMAINS AND RANGE:

The set of output values produced by a function is called the range of the function, in contrast with the domain, which is the set of input values over which the function is defined.
For most testing, our aim has been to specify input values and to predict and/or confirm output values that result from those inputs.
Interface testing requires that we select the output values of the calling routine i.e. caller's range must be compatible with the called routine's domain.
An interface test consists of exploring the correctness of the following mappings:

$$
\begin{array}{ll}
\text { caller domain --> caller range } & \text { (caller unit test) } \\
\text { caller range --> called domain } & \text { (integration test) } \\
\text { called domain --> called range } & \text { (called unit test) }
\end{array}
$$

$>$ CLOSURE COMPATIBILITY:

Assume that the caller's range and the called domain spans the same numbers - for example, 0 to 17 .
Figure 4.16 shows the four ways in which the caller's range closure and the called's domain closure can agree.
The thick line means closed and the thin line means open. Figure 4.16 shows the four cases consisting of domains that are closed both on top (17) and bottom (0), open top and closed bottom, closed top and open bottom, and open top and bottom.
caller called
[1]
open tops

open bottoms

both open

Fig: Range / Domain Closure Compatibility.

Fig: Equal-Span Range / Domain Compatibility Bugs.
INTERFACE RANGE / DOMAIN COMPATIBILITY TESTING:

For interface testing, bugs are more likely to concern single variables rather than peculiar combinations of two or more variables.
Test every input variable independently of other input variables to confirm compatibility of the caller's range and the called routine's domain span and closure of every domain defined for that variable.
There are two boundaries to test and it's a one-dimensional domain; therefore, it requires one on and one off point per boundary or a total of two on points and two off points for the domain - pick the off points appropriate to the closure (COOOOI).
Start with the called routine's domains and generate test points in accordance to the domain-testing strategy used for that routine in component testing.
Unless you're a mathematical whiz you won't be able to do this without tools for more than one variable at a time.

