
UNIT II
Addressing Modes, Instruction Set and Programming of 8086

Addressing Modes of 8086:

Addressing mode indicates a way of locating data or operands. Depending up on the
data type used in the instruction and the memory addressing modes, any instruction may
belong to one or more addressing modes or same instruction may not belong to any of the
addressing modes.

The addressing mode describes the types of operands and the way they are accessed for
executing an instruction. According to the flow of instruction execution, the instructions may be
categorized as

1. Sequential control flow instructions and
2. Control transfer instructions.

Sequential control flow instructions are the instructions which after execution, transfer
control to the next instruction appearing immediately after it (in the sequence) in the program. For
example the arithmetic, logic, data transfer and processor control instructions are Sequential
control flow instructions.

The control transfer instructions on the other hand transfer control to some predefined
address or the address somehow specified in the instruction, after their execution. For example
INT, CALL, RET & JUMP instructions fall under this category.

The addressing modes for Sequential and control flow instructions are explained as follows.
1. Immediate addressing mode:

In this type of addressing, immediate data is a part of instruction, and appears
in the form of successive byte or bytes.

Example: MOV AX, 0005H.

In the above example, 0005H is the immediate data. The immediate data may be 8- bit or 16-bit in
size.
2. Direct addressing mode:

In the direct addressing mode, a 16-bit memory address (offset) directly specified in the
instruction as a part of it.

Example: MOV AX, [5000H].
3. Register addressing mode:

In the register addressing mode, the data is stored in a register and it is referred using the
particular register. All the registers, except IP, may be used in this mode.

Example: MOV BX, AX
4. Register indirect addressing mode:

Sometimes, the address of the memory l o c a t i o n which contains data or operands is
determined in an indirect way, using the offset registers. The mode of addressing is known as
register indirect mode.

In this addressing mode, the offset address of data is in either BX or SI or DI Register. The
default segment is either DS or ES.

Example: MOV AX, [BX].

5. Indexed addressing mode:
In this addressing mode, offset of the operand is stored one of the index registers. DS & ES

are the default segments for index registers SI & DI respectively.
Example: MOV AX, [SI]

Here, data is available at an offset address stored in SI in DS.
6. Register relative addressing mode:

In this addressing mode, the data is available at an effective address formed by adding an
8-bit or 16-bit displacement with the content of any one of the register BX, BP, SI & DI in the default
(either in DS & ES) segment.

Example: MOV AX, 50H [BX]
7. Based indexed addressing mode:

The effective address of data is formed in this addressing mode, by adding content of a
base register (any one of BX or BP) to the content of an index register (any one of SI or DI). The
default segment register may be ES or DS.

Example: MOV AX, [BX][SI]
8. Relative based indexed:

The effective address is formed by adding an 8 or 16-bit displacement with the sum of
contents of any of the base registers (BX or BP) and any one of the index registers, in a default
segment.

Example: MOV AX, 50H [BX] [SI]
For the control transfer instructions, the addressing modes depend upon whether the

destination location is within the same segment or in a different one. It also depends upon the
method of passing the destination address to the processor. Basically, there are two addressing
modes for the control transfer instructions, viz. Inter segment and intra segment addressing modes.

If the location to which the control is to be transferred lies in a different segment
other than the current one, the mode is called intersegment mode. If the destination
location lies in the same segment, the mode is called intersegment mode.

Addressing Modes for control transfer instructions:
1. Intersegment

· Intersegment direct

· Intersegment indirect
2. Intrasegment

· Intrasegment direct

· Intrasegment indirect
1. Intersegment direct:

In this mode, the address to which the control is to be transferred is in a different segment.
This addressing mode provides a means of branching from one code segment to another code
segment. Here, the CS and IP of the destination address are specified directly in the instruction.

Example: JMP 5000H, 2000H; jump to effective address 2000H in segment 5000H.
2. Intersegment indirect:

In this mode, the address to which the control is to be transferred lies in a different
segment and it is passed to the instruction indirectly, i.e. contents of a memory block

containing four bytes, i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using any of the addressing modes,

except immediate mode.

Example: JMP [2000H].
Jump to an address in the other segment specified at effective address 2000H in DS.
3. Intrasegment direct mode:

In this mode, the address to which the control is to be transferred lies in the same
segment in which the control transfers instruction lies and appears directly in the

instruction as an immediate displacement value. In this addressing mode, the displacement
is computed relative to the content of the instruction pointer.

The effective address to which the control will be transferred is given by the sum
of 8 or 16 bit displacement and current content of IP. In case of jump instruction, if

the signed displacement (d) is of 8-bits (i.e. -128<d<+127), it as short jump and if it is of 16
bits (i.e. -32768<d<+32767), it is termed as long jump.

Example: JMP SHORT LABEL.
4. Intrasegment indirect mode:

In this mode, the displacement to which the control is to be transferred is in the
same segment in which the control transfer instruction lies, but it is passed to the
instruction directly. Here, the branch address is found as the content of a register or a
memory location.
This addressing mode may be used in unconditional branch instructions.

Example: JMP [BX]; Jump to effective address stored in BX.

Instruction set of 8086:

The Instruction set of 8086 microprocessor is classified into 7, they are:-

· Data transfer instructions
· Arithmetic& logical instructions
· Program control transfer instructions
· Machine Control Instructions
· Shift / rotate instructions
· Flag manipulation instructions
· String instructions

Data Transfer instructions

Data transfer instruction, as the name suggests is for the transfer of data from
memory to internal register, from internal register to memory, from one register to
another register, from input port to internal register, from internal register to output port
etc

1. MOV instruction

It is a general purpose instruction to transfer byte or word from register to
register, memory to register, register to memory or with immediate addressing.

General Form:

MOV destination, source

Here the source and destination needs to be of the same size, that is both 8 bit or
both 16 bit.

MOV instruction does not affect any flags.

Example:-

MOV BX, 00F2H ; load the immediate number 00F2H in BX
register

MOV CL, [2000H] ; Copy the 8 bit content of the memory location,

at a displacement of 2000H from
data segment base to the CL register

MOV [589H], BX Copy the 16 bit content of BX register on to

the memory location, which at a displacement of
589H from the data segment base.

MOV DS, CX Move the content of CX to DS

2. PUSH instruction

The PUSH instruction decrements the stack pointer by two and copies the word
from source to the location where stack pointer now points. Here the source must of word
size data. Source can be a general purpose register, segment register or a memory location.

The PUSH instruction first pushes the most significant byte to sp-1, then the least
significant to the sp-2.

Push instruction does not affect any flags.

Example:

PUSH CX ; Decrements SP by 2, copy content of CX to the stack
PUSH DS ; Decrement SP by 2 and copy DS to stack

3. POP instruction

The POP instruction copies a word from the stack location pointed by the stack
pointer to the destination. The destination can be a General purpose register, a segment
register or a memory location. Here after the content is copied the stack pointer is
automatically incremented by two.

The execution pattern is similar to that of the PUSH instruction.

Example:

POP CX ; Copy a word from the top of the stack to CX and increment SP by 2.

4. IN & OUT instructions

The IN instruction will copy data from a port to the accumulator. If 8 bit is read the data
will go to AL and if 16 bit then to AX. Similarly OUT instruction is used to copy data from
accumulator to an output port.

Both IN and OUT instructions can be done using direct and indirect addressing modes.
Example:

IN AL, 0F8H ; Copy a byte from the port 0F8H to AL

MOV DX, 30F8H ; Copy port address in DX

IN AL, DX ; Move 8 bit data from 30F8H port

IN AX, DX ; Move 16 bit data from 30F8H port

OUT 047H, AL ; Copy contents of AL to 8 bit port 047H

MOV DX, 30F8H ; Copy port address in DX

OUT DX, AL ; Move 8 bit data to the 30F8H port

OUT DX, AX ; Move 16 bit data to the 30F8H port

5. XCHG instruction

The XCHG instruction exchanges contents of the destination and source. Here
destination and source can be register and register or register and memory location, but
XCHG cannot interchange the value of 2 memory locations.

General Format

XCHG Destination, Source

Example:

XCHG BX, CX ; exchange word in CX with the word in BX

XCHG AL, CL ; exchange byte in CL with the byte in AL

XCHG AX, SUM[BX] ; here physical address, which is DS+SUM+[BX]. The
content at physical address and the content of AX
are interchanged.

Arithmetic and Logic instructions

The arithmetic and logic logical group of instruction include,

1. ADD instruction

Add instruction is used to add the current contents of destination with that of
source and store the result in destination. Here we can use register and/or memory
locations. AF, CF, OF, PF, SF, and ZF flags are affected

General Format:

ADD Destination, Source

Example:

· ADD AL, 0FH; Add the immediate content, 0FH to the content of AL and store the

result in AL
· ADD AX, BX; AX <= AX+BX
· ADD AX, 0100H – IMMEDIATE
· ADD AX, BX – REGISTER
· ADD AX,[SI] – REGISTER INDIRECT OR INDEXED
· ADD AX, [5000H] – DIRECT
· ADD [5000H], 0100H – IMMEDIATE
· ADD 0100H – DESTINATION AX (IMPLICT)

2. ADC: ADD WITH CARRY
This instruction performs the same operation as ADD instruction, but adds the carry flag bit

(which may be set as a result of the previous calculation) to the result. All the condition code flags
are affected by this instruction. The examples of this instruction along with the modes are as
follows:

Example:

· ADC AX,BX – REGISTER
· ADC AX,[SI] – REGISTER INDIRECT OR INDEXED
· ADC AX, [5000H] – DIRECT
· ADC [5000H], 0100H – IMMEDIATE
· ADC 0100H – IMMEDIATE (AX IMPLICT)

3. SUB instruction
SUB instruction is used to subtract the current contents of destination with that of source and

store the result in destination. Here we can use register and/or memory locations. AF, CF, OF, PF, SF,
and ZF flags are affected

General Format:
SUB Destination, Source

Example:

· SUB AL, 0FH ; subtract the immediate content, 0FH from the content of AL and
store the result in AL

· SUB AX, BX ; AX <= AX-BX
· SUB AX,0100H – IMMEDIATE (DESTINATION AX)
· SUB AX,BX – REGISTER
· SUB AX,[5000H] – DIRECT
· SUB [5000H], 0100H – IMMEDIATE

4. SBB: SUBTRACT WITH BORROW

The subtract with borrow instruction subtracts the source operand and the borrow flag (CF)
which may reflect the result of the previous calculations, from the destination operand. Subtraction
with borrow, here means subtracting 1 from the subtraction obtained by SUB, if carry (borrow) flag
is set.

The result is stored in the destination operand. All the flags are affected (condition code) by
this instruction. The examples of this instruction are as follows:

Example:

· SBB AX, 0100H – IMMEDIATE (DESTINATION AX)
· SBB AX, BX – REGISTER
· SBB AX,[5000H] – DIRECT
· SBB [5000H], 0100H – IMMEDIATE

5. CMP: COMPARE

The instruction compares the source operand, which may be a register or an immediate
data or a memory location, with a destination operand that may be a register or a memory location.
For comparison, it subtracts the source operand from the destination operand but does not store
the result anywhere. The flags are affected depending upon the result of the subtraction. If both of
the operands are equal, zero flag is set. If the source operand is greater than the destination
operand, carry flag is set or else, carry flag is reset. The examples of this instruction are as follows:

Example:

 CMP BX,0100H – IMMEDIATE
 CMP AX,0100H – IMMEDIATE

 CMP [5000H], 0100H – DIRECT
 CMP BX,[SI] – REGISTER INDIRECT OR INDEXED
 CMP BX, CX – REGISTER

6. INC & DEC instructions

INC and DEC instructions are used to increment and decrement the content of
the specified destination by one. AF, CF, OF, PF, SF, and ZF flags are affected.

Example:

· INC AL ; AL<= AL + 1
· INC AX ; AX<=AX + 1
· DEC AL ; AL<= AL – 1

· DEC AX ; AX<=AX – 1

7. AND instruction

This instruction logically ANDs each bit of the source byte/word with the
corresponding bit in the destination and stores the result in destination. The source can be
an immediate number, register or memory location, register can be a register or memory
location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the operation
and AF is undefined.

General Format:
AND Destination, Source

Example:

· AND BL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then after the operation BL
would be BL= 1000 0010.

· AND CX, AX ; CX <= CX AND AX
· AND CL, 08 ; CL<= CL AND (0000 1000)
8. OR instruction

This instruction logically ORs each bit of the source byte/word with the
corresponding bit in the destination and stores the result in destination. The source

can be an immediate number, register or memory location, register can be a register or
memory location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the
operation and AF is undefined.

General Format:

OR Destination, Source

Example:

· OR BL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then after the
operation BL would be BL= 1100 1110.

 OR CX, AX ; CX <= CX AND AX
 OR CL, 08 ; CL<= CL AND (0000 1000)

9. NOT instruction

The NOT instruction complements (inverts) the contents of an operand register
or a memory location, bit by bit. The examples are as follows:

Example:

· NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX= (0100)2= (4)16).

· NOT [5000H]

10. XOR instruction

The XOR operation is again carried out in a similar way to the AND and OR
operation. The constraints on the operands are also similar. The XOR operation gives a
high output, when the 2 input bits are dissimilar. Otherwise, the output is zero. The
example instructions are as follows:

Example:

· XOR AX,0098H
· XOR AX,BX

· XOR AX,[5000H]
Shift / Rotate Instructions

Shift instructions move the binary data to the left or right by shifting them within
the register or memory location. They also can perform multiplication of powers of

2
+n

 and division of powers of 2
-n

.

There are two type of shifts logical shifting and arithmetic shifting, later is used
with signed numbers while former with unsigned.

Fig.1 Shift operations

Rotate on the other hand rotates the information in a register or memory
either from one end to another or through the carry flag.

Fig.2 Rotate operations
. SHL/SAL instruction

Both the instruction shifts each bit to left, and places the MSB in CF and LSB is
made 0. The destination can be of byte size or of word size, also it can be a register or a
memory location. Number of shifts is indicated by the count.

All flags are affected.

General Format:

SAL/SHL destination, count

Example:

MOV BL, B7H ; BL is made B7H

SAL BL, 1 ; shift the content of BL register one place to left. Before

execution,

CY B7 B6 B5 B4 B3 B2 B1 B0

0 1 0 1 1 0 1 1 1

ßßßßßßßß

After the
execution,

CY B7 B6 B5 B4 B3 B2 B1 B0

1 0 1 1 0 1 1 1 0

2. SHR instruction

This instruction shifts each bit in the specified destination to the right and 0 is
stored in the MSB position. The LSB is shifted into the carry flag. The destination can be
of byte size or of word size, also it can be a register or a memory location. Number of
shifts is indicated by the count.

All flags are affected

General Format:

SHR destination, count

Example:

MOV BL, B7H ; BL is made B7H

SHR BL, 1 ; shift the content of BL register one place to the right.

3. ROL instruction

This instruction rotates all the bits in a specified byte or word to the left some
number of bit positions. MSB is placed as a new LSB and a new CF. The destination can be
of byte size or of word size, also it can be a register or a memory location. Number of
shifts is indicated by the count.

All flags are affected

General Format:

ROL destination, count

Example:

MOV BL, B7H ; BL is made B7H

ROL BL, 1 ; rotates the content of BL register one place to the left.

Before execution,
CY B7 B6 B5 B4 B3 B2 B1 B0

0 1 0 1 1 0 1 1 1

ßßßßßßßßß(B7) After the

execution,

CY B7 B6 B5 B4 B3 B2 B1 B0

1 0 1 1 0 1 1 1 1

4. ROR instruction

This instruction rotates all the bits in a specified byte or word to the right some
number of bit positions. LSB is placed as a new MSB and a new CF. The destination can be
of byte size or of word size, also it can be a register or a memory location. Number of
shifts is indicated by the count.

All flags are affected

General Format:

ROR destination, count

Example:

MOV BL, B7H ; BL is made B7H

ROR BL, 1 ; shift the content of BL register one place to the right.

5. RCR instruction
This instruction rotates all the bits in a specified byte or word to the right some number of

bit positions along with the carry flag. LSB is placed in a new CF and previous carry is placed in the
new MSB. The destination can be of byte size or of word size, also it can be a register or a memory
location. Number of shifts is indicated by the count.All flags are affected

General Format:

RCR destination, count

Example:

MOV BL, B7H ; BL is made B7H

RCR BL, 1 ; shift the content of BL register one place to the
right.

Program control transfer instructions

There are 2 types of such instructions. They are:

1. Unconditional transfer instructions – CALL, RET, JMP
2. Conditional transfer instructions – J condition

1. CALL instruction
The CALL instruction is used to transfer execution to a subprogram or procedure. There are

two types of CALL instructions, near and far.
A near CALL is a call to a procedure which is in the same code segment as the CALL

instruction. 8086 when encountered a near call, it decrements the SP by 2 and copies the offset of
the next instruction after the CALL on the stack. It loads the IP with the offset of the procedure
then to start the execution of the procedure.

A far CALL is the call to a procedure residing in a different segment. Here value of CS and
offset of the next instruction both are backed up in the stack. And then branches to the procedure
by changing the content of CS with the segment base containing procedure and IP with the offset
of the first instruction of the procedure.

Example:

Near call

CALL PRO ; PRO is the name of the procedure

CALL CX ; Here CX contains the offset of the first instruction of the
procedure, that is replaces the content of IP with the

content of

CX Far call

CALL DWORD PTR[8X] ; New values for CS and IP are fetched from four memory
locations in the DS. The new value for CS is fetched

from [8X] and [8X+1], the new IP is fetched
from [8X+2] and [8X+3].

2. RET instruction

RET instruction will return execution from a procedure to the next instruction after the
CALL instruction in the calling program. If it was a near call, then IP is replaced with the value at the
top of the stack, if it had been a far call, then another POP of the stack is required. This second
popped data from the stack is put in the CS, thus resuming the execution of the calling program.

General format:
RET

Example:

p1 PROC ; procedure declaration.

MOV ; AX,
RET ; return to caller. p1 ENDP

3. JMP instruction

his is also called as unconditional jump instruction, because the processor jumps to the specified
location rather than the instruction after the JMP instruction. Jumps can be short jumps when the
target address is in the same segment as the JMP instruction or far jumps when it is in a different
segment.

General

Format: JMP

<target

address>

4. Conditional Jump (J cond)

Conditional jumps are always short jumps in 8086. Here jump is done
only if the condition specified is true/false. If the condition is not satisfied, then
the execution proceeds in the normal way.

Example:

There are many conditional
jump instructions like

JC : Jump on carry
(CF=set)

JNC : Jump on non carry

(CF=reset) JZ :

Jump on zero (ZF=set)

JNO : Jump on overflow
(OF=set)

Iteration control instructions

These instructions are used to execute a series of instructions some number of
times. The number is specified in the CX register, which will be automatically
decremented in course of iteration. But here the destination address for the jump must
be in the range of -128 to 127 bytes.

Example:

Instructions here are:-

LOOP : loop through the set of instructions until CX is 0

LOOPE/LOOPZ : here the set of instructions are repeated until CX=0 or ZF=0

LOOPNE/LOOPNZ: here repeated until CX=0 or ZF=1

Machine Control Instructions

1. HLT instruction

The HLT instruction will cause the 8086 microprocessor to fetching and
executing instructions.

The 8086 will enter a halt state. The processor gets out of this Halt signal upon
an interrupt signal in INTR pin/NMI pin or a reset signal on RESET input.

General form:-

HLT

2. WAIT instruction

When this instruction is executed, the 8086 enters into an idle state. This idle
state is continued till a high is received on the TEST input pin or a valid interrupt signal
is received. Wait affects no flags. It generally is used to synchronize the 8086 with a
peripheral device(s).

3. ESC instruction

This instruction is used to pass instruction to a coprocessor like 8087. There is a
6 bit instruction for the coprocessor embedded in the ESC instruction. In most cases the
8086 treats ESC and a NOP, but in some cases the 8086 will access data items in
memory for the coprocessor

4. LOCK instruction

In multiprocessor environments, the different microprocessors share a system
bus, which is needed to access external devices like disks. LOCK Instruction is given as
prefix in the case when a processor needs exclusive access of the system bus for a
particular instruction. It affects no flags.

5. NOP instruction

At the end of NOP instruction, no operation is done other than the fetching and
decoding of the instruction. It takes 3 clock cycles. NOP is used to fill in time delays or to
provide space for instructions while trouble shooting. NOP affects no flags.

Flag manipulation instructions

1. STC instruction
This instruction sets the carry flag. It does not affect any other flag.

2. CLC instruction

his instruction resets the carry flag to zero. CLC does not affect any other flag.

3. CMC instruction
his instruction complements the carry flag. CMC does not affect any other flag.

4. STD instruction

This instruction is used to set the direction flag to one so that SI and/or DI can
be decremented automatically after execution of string instruction. STD does not affect
any other flag.

5. CLD instruction

This instruction is used to reset the direction flag to zero so that SI and/or DI
can be incremented automatically after execution of string instruction. CLD does not
affect any other flag.

6. STI instruction

This instruction sets the interrupt flag to 1. This enables INTR interrupt of the
8086. STI does not affect any other flag.

7. CLI instruction

This instruction resets the interrupt flag to 0. Due to this the 8086 will not
respond to an interrupt signal on its INTR input. CLI does not affect any other flag.

String Instructions

1. MOVS/MOVSB/MOVSW

These instructions copy a word or byte from a location in the data segment to a
location in the extra segment. The offset of the source is in SI and that of destination is in
DI. For multiple word/byte transfers the count is stored in the CX register.

When direction flag is 0, SI and DI are incremented and when it is 1, SI and
DI are decremented.

MOVS affect no flags. MOVSB is used for byte sized movements while
MOVSW is for word sized.

Example:

CLD ; clear the direction flag to auto increment SI and DI

MOV AX, 0000H ;

MOV DS, AX ; initialize data segment register to 0

MOV ES, AX ; initialize extra segment register to 0

MOV SI, 2000H ; Load the offset of the string1 in SI MOV

DI, 2400H ; Load the offset of the string2 in DI MOV CX,

04H ; load length of the string in CX

REP MOVSB ; decrement CX and MOVSB until CX will be 0

2. REP/REPE/REP2/REPNE/REPNZ

REP is used with string instruction; it repeats an instruction until the specified
condition becomes false.

Example:

REP REPE/REPZ

=> CX=0

=> CX=0 OR ZF=0

REPNE/REPNZ => CX=0 OR ZF=1

3. LODS/LODSB/LODSW

This instruction copies a byte from a string location pointed to by SI to AL or a
word from a string location pointed to by SI to AX.LODS does not affect any flags.
LODSB copies byte and LODSW copies word.

4. STOS/STOSB/STOSW

The STOS instruction is used to store a byte/word contained in AL/AX
to the offset contained in the DI register. STOS does not affect any flags.
After copying the content DI is automatically incremented or decremented,
based on the value of direction flag.

Example:

MOV DL, OFFSET D_STRING ; assign DI with destination address.

STOS D_STRING ; assembler uses string name to determine byte or
word, if byte then AL is used and if of word size, AX is used.

5. CMPS/CMPSB/CMPSW

CMPS is used to compare the strings, byte wise or word wise. The comparison
is affected by subtraction of content pointed by DI from that pointed by SI. The AF, CF,
OF, PF, SF and ZF flags are affected by this instruction, but neither operand is affected.

Example:

MOV SI, OFFSET F_STRING ; point first string

MOV DI, OFFSET S_STRING ; MOV point second string

CX, 0AH ; CLD set the counter as 0AH

; REPE CMPSB ; clear direction flag to auto increment repeatedly

compare till unequal or counter =0

Assembler Directives:

There are some instructions in the assembly language program which are not a part of
processor instruction set. These instructions are instructions to the assembler, linker and
loader. These are referred to as pseudo-operations or as assembler directives. The assembler
directives enable us to control the way in which a program assembles and lists. They act
during the assembly of a program and do not generate any executable machine code.

There are many specialized assembler directives. Let us see the commonly used
assembler directive in 8086 assembly language programming.

1. ASSUME :

It is used to tell the name of the logical segment the assembler to use for a
specified segment.

E.g.: ASSUME CS: CODE tells that the instructions for a program are in a logical
segment named CODE.

2. DB -Define Byte:

The DB directive is used to reserve byte or bytes of memory locations
in the available memory. While preparing the EXE file, this directive directs the
assembler to allocate the specified number of memory bytes to the said data type that
may be a constant, variable, string, etc. Another option of this directive also initializes
the reserved memory bytes with the ASCII codes of the characters specified as a string.
The following examples show how the DB directive is used for different purposes.

1) RANKS DB 01H,02H,03H,04H

This statement directs the assembler to reserve four memory locations for a list
named RANKS and initialize them with the above specified four values.

2) MESSAGE DB „GOOD MORNING‟

This makes the assembler reserve the number of bytes of memory equal to the number of
characters in the string named MESSAGE and initializes those locations by the ASCII
equivalent of these characters.

3) VALUE DB 50H

This statement directs the assembler to reserve 50H memory bytes and leave them
uninitialized for the variable named VALUE.

3. DD -Define Double word - used to declare a double word type variable or to
reserve memory locations that can be accessed as double word.

E.g.: ARRAY _POINTER DD 25629261H declares
a double word named

ARRAY_POINTER.

4. DQ -Define Quad word

This directive is used to direct the assembler to reserve 4 words (8 bytes) of
memory for the specified variable and may initialize it with the specified values.

5. DT -Define Ten Bytes:

The DT directive directs the assembler to define the specified
variable requiring 10-bytes for its storage and initialize the 10-bytes with the
specified values. The directive may be used in case of variables facing heavy
numerical calculations, generally processed by numerical processors.

E.g.: PACKED_BCD 11223344556677889900 declares an array that is 10 bytes in length.

6. DW -Define Word:

The DW directives serves the same purposes as the DB directive, but it now
makes the assembler reserve the number of memory words (16-bit) instead of bytes.
Some examples are given to explain this directive.

1) WORDS DW 1234H, 4567H, 78ABH, 045CH

This makes the assembler reserve four words in memory (8 bytes), and initialize the words
with the specified values in the statements. During initialization, the lower bytes are
stored at the lower memory addresses, while the upper bytes are stored at the higher
addresses.

2) NUMBER1 DW 1245H

This makes the assembler reserve one word in memory.

7. END-End of Program:

The END directive marks the end of an assembly language program. When the
assembler comes across this END directive, it ignores the source lines available later
on. Hence, it should be ensured that the END statement should be the last statement
in the file and should not appear in between. Also, no useful program statement
should lie in the file, after the END statement.

8. ENDP-End Procedure - Used along with the name of the procedure to indicate the end of a
procedure.

E.g.: SQUARE_ROOT PROC: start of procedure

SQUARE_ROOT ENDP: End of procedure

9. ENDS-End of Segment:

This directive marks the end of a logical segment. The logical segments are
assigned with the names using the ASSUME directive. The names appear with the
ENDS directive as prefixes to mark the end of those particular segments. Whatever are
the contents of the segments, they should appear in the program before ENDS. Any
statement appearing after ENDS will be neglected from the segment. The structure
shown below explains the fact more clearly.

DATA SEGMENT

DATA ENDS

ASSUME CS: CODE, DS: DATA CODE

SEGMENT

CODE ENDS

ENDS

10. EQU-Equate - Used to give a name to some value or symbol. Each time the assembler finds
the given name in the program, it will replace the name with the vale.

E.g.: CORRECTION_FACTOR EQU

03H MOV AL,

CORRECTION_FACTOR

11. EVEN - Tells the assembler to increment the location counter to the next even address if it
is not already at an even address.

Used because the processor can read even addressed data in one clock cycle

12. EXTRN - Tells the assembler that the names or labels following the directive are in some
other assembly module.

For example if a procedure in a program module assembled at a different time from
that which contains the CALL instruction ,this directive is used to tell the assembler
that the procedure is external

13. GLOBAL - Can be used in place of a PUBLIC directive or in place of an EXTRN
directive.

It is used to make a symbol defined in one module available to other modules.

E.g.: GLOBAL DIVISOR makes the variable DIVISOR public so that it can be

accessed from other modules.

14. GROUP-Used to tell the assembler to group the logical statements named after the
directive into one logical group segment, allowing the contents of all the segments to be
accessed from the same group segment base.

E.g.: SMALL_SYSTEM GROUP CODE, DATA, STACK_SEG

15. INCLUDE - Used to tell the assembler to insert a block of source code from the named file
into the current source module.

This will shorten the source code.

16. LABEL- Used to give a name to the current value in the location counter.

This directive is followed by a term that specifies the type you want associated with
that name.

E.g: ENTRY_POINT LABEL FAR NEXT:

MOV AL, BL

17. NAME- Used to give a specific name to each assembly module when
programs consisting of several modules are written.

E.g.: NAME PC_BOARD

18. OFFSET- Used to determine the offset or displacement of a named data item or
procedure from the start of the segment which contains it.

E.g.: MOV BX, OFFSET PRICES

19. ORG- The location counter is set to 0000 when the assembler starts reading a
segment. The ORG directive allows setting a desired value at any point in the program.

E.g.: ORG 2000H

20. PROC- Used to identify the start of a procedure.

E.g. SMART_DIVIDE PROC FAR identifies the start of a procedure named
SMART_DIVIDE and tells the assembler that the procedure is far

21. PTR- Used to assign a specific type to a variable or to a label.

E.g.: INC BYTE PTR[BX] tells the assembler that we want to increment the byte
pointed to by BX

22. PUBLIC- Used to tell the assembler that a specified name or label will be
accessed from other modules.

E.g.: PUBLIC DIVISOR, DIVIDEND makes the two variables
DIVISOR and DIVIDEND available to other assembly modules.

23. SEGMENT- Used to indicate the start of a logical segment.

E.g.: CODE SEGMENT indicates to the assembler the start of a logical
segment called CODE

24. SHORT- Used to tell the assembler that only a 1 byte displacement is needed to code a
jump instruction.

E.g.: JMP SHORT NEARBY_LABEL

25. TYPE - Used to tell the assembler to determine the type of a specified variable.

E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to increment BX
to point to the next word in an array of words.

Macros:

Macro is a group of instruction. The macro assembler generates the code in the
program each time where the macro is “called”. Macros can be defined by

MACROP and ENDM assembler directives. Creating macro is very similar to creating a new
opcode that can used in the program, as shown below.

Example:

INIT MACRO

MOV AX,@DATA

MOV DS,AX

MOV ES, AX

ENDM

It is important to note that macro sequences execute faster than procedures because there is
no CALL and RET instructions to execute. The assembler places the macro instructions in
the program each time when it is invoked. This procedure is known as Macro expansion.

WHILE:

In Macro, the WHILE statement is used to repeat macro sequence until the
expression specified with it is true. Like REPEAT, end of loop is specified by ENDM
statement. The WHILE statement allows to use relational operators in its expressions.

The table-1 shows the relational operators used with WHILE statements.

PERATOR FUNCTION
EQ Equal
NE Not equal
LE Less than or equal
LT Less than
GE Greater than or equal
GT Greater than
NOT Logical inversion
AND Logical AND
OR Logical OR

Table-1: Relational operators used in WHILE statement.

mailto:@DATA

	Unit-1_MPI-LECTURE-NOTES-II-II-R15.pdf
	Unit-2_MPI-LECTURE-NOTES-II-II-R15-49-71.pdf
	Unit-3_MPI-LECTURE-NOTES II-II-R15.pdf
	UNIT- 4_MPI LECTURE NOTES -II-II-R15.pdf
	UNIT-5_MPI-LECTURE-NOTES-II-II-R15.pdf

