| B.TECH         | RF INTEGRATED CIRCUITS   |
|----------------|--------------------------|
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                | JNTUA UNIVERSITY         |
|                | PREVIOUS QUESTION PAPERS |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
|                |                          |
| D (            | E. D. CENY (OT) IAN      |
| Dept., of E.C. | E, RCEW(3T),KNL.         |

Code: 13A04804

# B.Tech IV Year II Semester (R13) Advanced Supplementary Examinations July 2018

## RF INTEGRATED CIRCUITS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

## PART - A

(Compulsory Question)

\*\*\*\*

- 1 Answer the following:  $(10 \times 02 = 20 \text{ Marks})$ 
  - (a) Write the conditions for resonance in parallel RLC network.
  - (b) What is reflection coefficient in RF system?
  - (c) What is the relation between bandwidth and rise time for 1st order systems?
  - (d) What is figure of merit for a MOS devices?
  - (e) Define noise figure.
  - (f) What is mixer? Why the uses of mixer?
  - (g) What is meant by negative resistance oscillators?
  - (h) What is the difference between filter and loop filter?
  - (i) Define phase noise.
  - (i) What is CDMA?

#### PART - B

(Answer all five units, 5 X 10 = 50 Marks)

[ UNIT - I ]

- 2 (a) Explain in detail 'Pi' and 'T'-matching of a network.
  - (b) Explain in detail the basic architecture of a RF system.

OR

- 3 (a) Compare parallel RLC and series RLC networks.
  - (b) Explain about passive IC components interconnects in detail.

[ UNIT - II ]

- 4 (a) Draw and explain about shunt-series amplifier and write its applications.
  - (b) Draw and explain about CS-amplifier for a single tuned amplifier.

OR

5 Explain and derive bandwidth estimation using open circuit time constant and short circuit time constant.

(UNIT – III)

- 6 (a) Discuss about thermal noise, flicker noise and noise figure.
  - (b) Explain in detail LNA design.

OR

7 Explain about mixer design and sub sampling mixers.

[UNIT - IV]

- 8 (a) Explain about class A, AB RF power amplifier with neat diagrams.
  - (b) Explain about charge pumps and loop filters.

OR

- 9 Write short notes on:
  - (a) Voltage controlled oscillators.
  - (b) Negative resistance oscillators.

UNIT – V

- 10 (a) Explain about GSM radio architectures in detail with suitable diagram.
  - (b) Discuss about integer-N synthesis and fractional frequency synthesis.

OR

- 11 Write short notes on:
  - (a) UMTS radio architectures.
  - (b) CDMA radio architectures.

Code: 13A04804

# B.Tech IV Year II Semester (R13) Advanced Supplementary Examinations July 2017

## RF INTEGRATED CIRCUITS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

#### PART - A

(Compulsory Question)

\*\*\*

- 1 Answer the following:  $(10 \times 02 = 20 \text{ Marks})$ 
  - (a) Brief about behavior of wire at radio frequencies.
  - (b) Write a note on Q factor of parallel RLC circuit.
  - (c) Differentiate between distributed and lumped systems.
  - (d) Define rise time and delay time.
  - (e) Write noise figure equation.
  - (f) List different types of multiplier based mixers.
  - (g) Draw the block diagram of General power amplifier model.
  - (h) which amplifier is introduced to overcome the crossover distribution that occurs in class B.
  - (i) List different types of resonator technologies.
  - (j) Draw the block diagram of generic transceiver.

#### PART - B

(Answer all five units, 5 X 10 = 50 Marks)

[ UNIT - I ]

2 Explain in detail about the architecture of Radio Frequency system.

OR

3 Define the T-match circuit and find out the net Q factor of the circuit.

[ UNIT - II ]

4 Derive an expression for characteristic impedance and propagation constant of lossy transmission line.

OR

5 Discuss the method of open circuit time constant for estimating the bandwidth of the system.

UNIT – III

6 Discuss the behavior of LNA topologies with its design constraints.

OR

7 Discuss in detail about sub sampling mixers.

[UNIT - IV]

8 Explain the operation of class A power amplifier and find its maximum drain efficiency.

OR

9 Explain in detail about linearized PLL models.

UNIT - V

10 Draw the block diagram of GSM radio architecture and explain brief.

OR

- 11 Explain the following:
  - (a) PLL.
  - (b) Charge pumps.

**R13** 

Code: 13A04804

# B.Tech IV Year II Semester (R13) Regular Examinations April 2017

## RF INTEGRATED CIRCUITS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

#### PART - A

(Compulsory Question)

\*\*\*\*

- 1 Answer the following:  $(10 \times 02 = 20 \text{ Marks})$ 
  - (a) What are the conditions for resonance in parallel RLC network?
    - (b) What is skin effect?
    - (c) Define reflection coefficient.
    - (d) State the relation between bandwidth and rise time for first order system.
    - (e) Write a note on excess noise.
    - (f) What is the advantage of sub sampling mixer?
    - (g) List the applications of PLL.
    - (h) Why is the isolator placed at the output of the amplifier?
    - (i) Write a note on ring oscillator.
    - (j) Define frequency synthesizer.

#### PART - B

(Answer all five units,  $5 \times 10 = 50 \text{ Marks}$ )

[ UNIT - I ]

2 Explain in detail about the architecture of Radio Frequency system.

OR

3 Explain transmission medium and reflections in radio frequency system.

[ UNIT – II ]

4 Prove that a long channel MOSFET transconductance depends only on the square root of bias current.

OR

5 Discuss the method of short circuit time constant for estimating the bandwidth of the system

( UNIT – III

6 Discuss in detail about FLICKER noise in MOSFETs.

OR

7 Briefly explain the mixer design considerations.

UNIT - IV

8 Explain in detail about class F amplifiers.

OR

9 Explain about different negative resistance oscillators with neat sketch.

UNIT – V

10 Explain the method of frequency synthesis using fractional – N synthesizers.

OR

11 Draw the block diagram of UMTS radio architecture and explain in detail.

R13

Code: 13A04804

# B.Tech IV Year II Semester (R13) Regular & Supplementary Examinations April 2018

#### RF INTEGRATED CIRCUITS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

#### PART – A

(Compulsory Question)

\*\*\*\*

- 1 Answer the following:  $(10 \times 02 = 20 \text{ Marks})$ 
  - (a) State the maximum power transfer theorem and its conditions.
  - (b) What are the conditions for resonance in series RLC networks?
  - (c) Define gain and bandwidth.
  - (d) What is reflection coefficient?
  - (e) What is thermal noise?
  - (f) Define phase locked loop.
  - (g) What is power match and noise match.
  - (h) Define phase detector.
  - (i) What is meant by integer-N synthesis?
  - (j) Define frequency synthesis.

#### PART - B

(Answer all five units,  $5 \times 10 = 50 \text{ Marks}$ )

UNIT – I

- 2 (a) Design and convert series to parallel RL & RC network transformations.
  - (b) Explain about passive IC components interconnects in RF system.

OF

- 3 (a) Compare Pi match and T-match of a network system.
  - (b) Discuss about the basic architecture of a RF system.

UNIT – II

4 Prove that a long channel MOS device transconductance depends only on the square root of bias current.

OR

- 5 (a) Draw and explain about the tuned amplifier.
  - (b) Explain about the high frequency amplifier design.

UNIT - III

- 6 (a) Explain about intrinsic MOS noise parameters.
  - (b) Explain about power match versus noise match.

OR

7 Design any two examples of multiplier based mixers.

UNIT - IV

- 8 (a) Discuss about class D, E, F amplifier in detail.
  - (b) Explain about phase locked loops and phase detectors.

OR

- 9 Write short notes on:
  - (a) Negative resistance oscillators.
  - (b) Linearlized PLL models.

UNIT – V

- 10 (a) Explain about frequency synthesis in detail.
  - (b) Discuss about phase noise and fractional frequency in frequency synthesis.

OR

- 11 Write short notes on:
  - (a) GSM radio architecture.
  - (b) CDMA radio architecture.

# B.Tech IV Year II Semester (R15) Regular Examinations April 2019

# RF INTEGRATED CIRCUITS

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

### PART - A

(Compulsory Question)

\*\*\*\*

- 1 Answer the following: (10 X 02 = 20 Marks)
  - (a) Draw a series RLC tank circuit.
  - (b) Differentiate between series and parallel RLC networks.
  - (c) What is the range of reflection coefficient?
  - (d) A cascade of 8 identical amplifiers is connected in open circuit, each of which is single-pole with a 2 ms time constant. Find its bandwidth.
  - (e) For a 1  $k\Omega$  resistor at room temperature and a 10 kHz bandwidth, find the RMS noise voltage.
  - (f) Write a note on subsampling mixers.
  - (g) The average power delivered to the load is given as 10 W,  $P_{in} = 2$  W and  $P_{supp} = 4$  W, find the power-added efficiency of the power amplifier.
  - (h) Give the average current and average slope equation of PFD/CP circuit for an input phase difference of  $\Delta \phi \ rad = [\Delta \phi/2\pi] \times T_{in}$ .
  - (i) With the phase noise –40dBc integrated over the range of 1 kHz to 100 kHz. Give the expression to convert it in to jitter.
  - (j) Mention some advantages of UMTS radio architectures.

#### PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 Derive the expression for Q factor in an RLC network with a neat diagram and necessary equations.

C)F

3 What is the role of resistors, capacitors and inductors in an RF system? Explain in detail.

UNIT - II

- A slotted line measurement yields the following parameter values:
  - (i) Voltage minima at 9.2 cm and 12.4 cm measured away from the load with the line terminated in a short.
  - (ii) VSWR = 5.1 with the line terminated in the unknown load; a voltage minimum is located 11.6 cm measured away from load. What is the normalized line impedance?

OR

Consider an AC-coupled system to estimate the low frequency -3dB point. Calculate that how large the coupling capacitors have to be to achieve a specified low-frequency breakpoint.


Contd. in page 2

# UNIT - III

What are the parameters associated with intrinsic MOS noise? Explain in detail about each one of them with necessary equations.

## OR

- 7 Discuss the noise behavior of the following receiver in two cases shown in figure given below:
  - (i)  $\omega_{LO1}$  is far from  $\omega_{RF}$ .
  - (ii)  $\omega_{LO1}$  lies inside the band.



8 Construct a tank consisting of lossy inductor and lossy capacitor. Determine the overall Q in terms of the quality factor of each.

#### OR

- 9 Plot the input / output characteristic of the XOR phase detector for two cases:
  - (i) The circuit has a single-ended output that swings between 0 to V<sub>DD</sub>.
  - (ii) The circuit has a differential output that swings between  $-V_0$  and  $+V_0$ .

# UNIT - V

Derive the expression for randomization and noise shaping in a fractional-N frequency synthesizers.

## OR

- 11 Give a brief note on the following radio architectures:
  - (a) Code Division Multiple Access.
  - (b) Universal Mobile Telecommunication System.