
Lecture Notes: M. ANANTHA LAKSMI

1 Dept. of CSE, RCEW

UNIT - 3

Part - 1

Binary Trees

A data structure is said to be linear if its elements form a sequence or a
linear list. Previous linear data structures that we have studied like an
array, stacks, queues and linked lists organize data in linear order. A data
structure is said to be non linear if its elements form a hierarchical
classification where, data items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and
graph structures represents hierarchial relationship between individual
data elements. Graphs are nothing but trees with certain restrictions
removed.

In this chapter in particular, we will explain special type of trees known as
binary trees, which are easy to maintain in the computer.

5.1. TREES:

A tree is hierarchical collection of nodes. One of the nodes, known as the root, is at the

top of the hierarchy. Each node can have at most one link coming into it. The node

where the link originates is called the parent node. The root node has no parent. The

links leaving a node (any number of links are allowed) point to child nodes. Trees are

recursive structures. Each child node is itself the root of a subtree. At the bottom of

the tree are leaf nodes, which have no children.

Trees represent a special case of more general structures known as graphs. In a graph,

there is no restrictions on the number of links that can enter or leave a node, and

cycles may be present in the graph. The figure 5.1.1 shows a tree and a non-tree.

Figure 5.1.1 A Tree and a not a tree

In a tree data structure, there is no distinction between the various children of a node

i.e., none is the "first child" or "last child". A tree in which such distinctions are made is

called an ordered tree, and data structures built on them are called ordered tree
data structures. Ordered trees are by far the commonest form of tree data structure.

a
a

b c b c

d e f d e

A Tree Not a Tree

Lecture Notes: M. ANANTHA LAKSMI

2 Dept. of CSE, RCEW

5.2. BINARY TREE:

In general, tree nodes can have any number of children. In a binary tree, each node

can have at most two children. A binary tree is either empty or consists of a node

called the root together with two binary trees called the left subtree and the right
subtree.

A tree with no nodes is called as a null tree. A binary tree is shown in figure 5.2.1.

Figure 5.2.1. Binary Tree

Binary trees are easy to implement because they have a small, fixed number of child

links. Because of this characteristic, binary trees are the most common types of trees

and form the basis of many important data structures.

Tree Terminology:

Leaf node

A node with no children is called a leaf (or external node). A node which is not

a leaf is called an internal node.

Path
A sequence of nodes n1, n2, . . ., nk, such that ni is the parent of ni + 1 for i = 1,
2,. . ., k - 1. The length of a path is 1 less than the number of nodes on the

path. Thus there is a path of length zero from a node to itself.

For the tree shown in figure 5.2.1, the path between A and I is A, B, D, I.

Siblings

The children of the same parent are called siblings.

For the tree shown in figure 5.2.1, F and G are the siblings of the parent node C

and H and I are the siblings of the parent node D.

Ancestor and Descendent

If there is a path from node A to node B, then A is called an ancestor of B and

B is called a descendent of A.

Subtree

Any node of a tree, with all of its descendants is a subtree.

A

left child B C right child

right subtree

left subtree D E F G

H I

Lecture Notes: M. ANANTHA LAKSMI

3 Dept. of CSE, RCEW

Level
The level of the node refers to its distance from the root. The root of the tree

has level O, and the level of any other node in the tree is one more than the

level of its parent. For example, in the binary tree of Figure 5.2.1 node F is at
level 2 and node H is at level 3. The maximum number of nodes at any level is

2n.

Height

The maximum level in a tree determines its height. The height of a node in a

tree is the length of a longest path from the node to a leaf. The term depth is

also used to denote height of the tree. The height of the tree of Figure 5.2.1 is

3.

Depth
The depth of a node is the number of nodes along the path from the root to that

node. For instance, node ‘C’ in figure 5.2.1 has a depth of 1.

Assigning level numbers and Numbering of nodes for a binary tree:

The nodes of a binary tree can be numbered in a natural way, level by level, left

to right. The nodes of a complete binary tree can be numbered so that the root

is assigned the number 1, a left child is assigned twice the number assigned its

parent, and a right child is assigned one more than twice the number assigned

its parent. For example, see Figure 5.2.2.

Figure 5.2.2. Level by level numbering of binary tree

Properties of binary trees:

Some of the important properties of a binary tree are as follows:

1. If h = height of a binary tree, then

a. Maximum number of leaves = 2h

b. Maximum number of nodes = 2h + 1 - 1

2. If a binary tree contains m nodes at level l, it contains at most 2m nodes at

level l + 1.

3. Since a binary tree can contain at most one node at level 0 (the root), it can

contain at most 2l node at level l.

4. The total number of edges in a full binary tree with n node is n - 1.

Level 0
1

2 3
Level 1

4 5 6 7
Level 2

Level 3
8 9

Lecture Notes: M. ANANTHA LAKSMI

4 Dept. of CSE, RCEW

Strictly Binary tree:

If every non-leaf node in a binary tree has nonempty left and right subtrees, the

tree is termed as strictly binary tree. Thus the tree of figure 5.2.3(a) is strictly

binary. A strictly binary tree with n leaves always contains 2n - 1 nodes.

Full Binary tree:

A full binary tree of height h has all its leaves at level h. Alternatively; All non

leaf nodes of a full binary tree have two children, and the leaf nodes have no

children.

A full binary tree with height h has 2h + 1 - 1 nodes. A full binary tree of height h

is a strictly binary tree all of whose leaves are at level h. Figure 5.2.3(d)

illustrates the full binary tree containing 15 nodes and of height 3.
A full binary tree of height h contains 2h leaves and, 2h - 1 non-leaf nodes.

Thus by induction, total number of nodes (tn) 


h

2 l 2 h 1 1 .
l 0

For example, a full binary tree of height 3 contains 23+1 – 1 = 15 nodes.

Figure 5.2.3. Examples of binary trees

Complete Binary tree:

A binary tree with n nodes is said to be complete if it contains all the first n
nodes of the above numbering scheme. Figure 5.2.4 shows examples of

complete and incomplete binary trees.

A complete binary tree of height h looks like a full binary tree down to level h-1,

and the level h is filled from left to right.

1 Strict Binary Tree
1

(a)

2 3
2 3

6 7 4 5 6 7

12 13 8 9 Strictly Complete
binary tree

(b)

1
1

2 3
2 3

4 5 6 7
4 5 6 7

8 9 10
8 9 10 11 12 13 14 15

Complete binary tree (c) Full binary tree (d)

Lecture Notes: M. ANANTHA LAKSMI

5 Dept. of CSE, RCEW

A complete binary tree with n leaves that is not strictly binary has 2n nodes. For

example, the tree of Figure 5.2.3(c) is a complete binary tree having 5 leaves

and 10 nodes.

Figure 5.2.4. Examples of complete and incomplete binary trees

Internal and external nodes:

We define two terms: Internal nodes and external nodes. An internal node is a tree

node having at least one–key and possibly some children. It is some times convenient

to have another types of nodes, called an external node, and pretend that all null child

links point to such a node. An external node doesn’t exist, but serves as a conceptual

place holder for nodes to be inserted.

We draw internal nodes using circles, with letters as labels. External nodes are denoted

by squares. The square node version is sometimes called an extended binary tree. A

binary tree with n internal nodes has n+1 external nodes. Figure 5.2.6 shows a sample

tree illustrating both internal and external nodes.

Figure 5.2.6. Internal and external nodes

Data Structures for Binary Trees:

1. Arrays; especially suited for complete and full binary trees.

2. Pointer-based.

Array-based Implementation:

Binary trees can also be stored in arrays, and if the tree is a complete binary tree, this

method wastes no space. In this compact arrangement, if a node has an index i, its

children are found at indices 2i+1 and 2i+2, while its parent (if any) is found at index

floor((i-1)/2) (assuming the root of the tree stored in the array at an index zero).

1 4 5

2 3

c

a d Internal Nodes: a, b, c, d
External Nodes: 1, 2, 3, 4, 5

b

1 1 1

2 3 2 3 2

4 5 6 4 5 7 4

Complete Binary Tree

but not strict

(a)

Not Complete and not

strict

(b)

Not Complete and not

strict

(c)

Lecture Notes: M. ANANTHA LAKSMI

6 Dept. of CSE, RCEW

node:

Empty Tree:

root

NULL

This method benefits from more compact storage and better locality of reference,
particularly during a preorder traversal. However, it requires contiguous memory,

expensive to grow and wastes space proportional to 2h - n for a tree of height h with n
nodes.

Linked Representation (Pointer based):

Array representation is good for complete binary tree, but it is wasteful for many other

binary trees. The representation suffers from insertion and deletion of node from the

middle of the tree, as it requires the moment of potentially many nodes to reflect the

change in level number of this node. To overcome this difficulty we represent the

binary tree in linked representation.

In linked representation each node in a binary has three fields, the left child field

denoted as LeftChild, data field denoted as data and the right child field denoted as

RightChild. If any sub-tree is empty then the corresponding pointer’s LeftChild and

RightChild will store a NULL value. If the tree itself is empty the root pointer will store a

NULL value.

The advantage of using linked representation of binary tree is that:

 Insertion and deletion involve no data movement and no movement of nodes

except the rearrangement of pointers.

The disadvantages of linked representation of binary tree includes:

 Given a node structure, it is difficult to determine its parent node.

 Memory spaces are wasted for storing NULL pointers for the nodes, which

have no subtrees.

The structure definition, node representation empty binary tree is shown in figure 5.2.6

and the linked representation of binary tree using this node structure is given in figure

5.2.7.

Figure 5.2.6. Structure definition, node representation and empty tree

LeftC hild data RightChild

struct binarytree

{

struct binarytree *LeftChild;

int data;

struct binarytree *RightChild;

};

typedef struct binarytree node;

node *root = NULL;

0 1 2 3 4 5 6

Lecture Notes: M. ANANTHA LAKSMI

7 Dept. of CSE, RCEW

A

B C

A root

D E F G

H I

Figure 5.2.7. Linked representation for the binary tree

5.3. Binary Tree Traversal Techniques:

A tree traversal is a method of visiting every node in the tree. By visit, we mean that

some type of operation is performed. For example, you may wish to print the contents

of the nodes.

There are four common ways to traverse a binary tree:

1. Preorder

2. Inorder

3. Postorder

4. Level order

In the first three traversal methods, the left subtree of a node is traversed before the

right subtree. The difference among them comes from the difference in the time at

which a root node is visited.

5.3.1. Recursive Traversal Algorithms:

Inorder Traversal:

In the case of inorder traversal, the root of each subtree is visited after its left subtree

has been traversed but before the traversal of its right subtree begins. The steps for

traversing a binary tree in inorder traversal are:

1. Visit the left subtree, using inorder.
2. Visit the root.

3. Visit the right subtree, using inorder.

The algorithm for inorder traversal is as follows:

void inorder(node *root)

{
if(root != NULL)

{

inorder(root->lchild);

X I X

X H X

X G X

X F X

X E X

 D

Lecture Notes: M. ANANTHA LAKSMI

8 Dept. of CSE, RCEW

print root -> data;

inorder(root->rchild);
}

}

Preorder Traversal:

In a preorder traversal, each root node is visited before its left and right subtrees are

traversed. Preorder search is also called backtracking. The steps for traversing a binary

tree in preorder traversal are:

1. Visit the root.

2. Visit the left subtree, using preorder.

3. Visit the right subtree, using preorder.

The algorithm for preorder traversal is as follows:

void preorder(node *root)

{
if(root != NULL)

{

print root -> data;

preorder (root -> lchild);

preorder (root -> rchild);
}

}

Postorder Traversal:

In a postorder traversal, each root is visited after its left and right subtrees have been

traversed. The steps for traversing a binary tree in postorder traversal are:

1. Visit the left subtree, using postorder.

2. Visit the right subtree, using postorder

3. Visit the root.

The algorithm for postorder traversal is as follows:

void postorder(node *root)

{
if(root != NULL)

{

postorder (root -> lchild);

postorder (root -> rchild);

print (root -> data);
}

}

Level order Traversal:

In a level order traversal, the nodes are visited level by level starting from the root,

and going from left to right. The level order traversal requires a queue data structure.

So, it is not possible to develop a recursive procedure to traverse the binary tree in

level order. This is nothing but a breadth first search technique.

Lecture Notes: M. ANANTHA LAKSMI

9 Dept. of CSE, RCEW

The algorithm for level order traversal is as follows:

void levelorder()

{
int j;

for(j = 0; j < ctr; j++)

{

if(tree[j] != NULL)

print tree[j] -> data;

}

}

Example 1:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

Example 2:

Traverse the following binary tree in pre, post, inorder and level order.

P

F S

B H R Y

G T Z

W

Bin a ry T ree Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

• P reo rde r t ra v e rs a l y ie lds:

A, B, D, C , E, G , F , H, I

• Po sto rder travers a l yields:

D, B, G , E, H, I, F , C , A

• Ino rder travers a l yields:

D, B, A, E, G , C , H, F , I

• Level o rde r travers a l yields:

A, B, C , D, E, F , G , H, I

A

B C

D E F

G H I

• P reo rde r t ra v e rs a l y ie lds:

P , F , B, H, G , S, R, Y, T, W , Z

• Po sto rder travers a l yields:

B, G , H, F , R, W , T, Z, Y, S, P

• Ino rder travers a l yields:

B, F , G , H, P , R, S, T, W , Y, Z

• Level o rde r travers a l yields:

P , F , S, B, H, R, Y, G , T, Z, W

Lecture Notes: M. ANANTHA LAKSMI

10 Dept. of CSE, RCEW

Example 3:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T ree Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

Example 4:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

5.3.2. Building Binary Tree from Traversal Pairs:

Sometimes it is required to construct a binary tree if its traversals are known. From a

single traversal it is not possible to construct unique binary tree. However any of the

two traversals are given then the corresponding tree can be drawn uniquely:

 Inorder and preorder

 Inorder and postorder

 Inorder and level order

The basic principle for formulation is as follows:

If the preorder traversal is given, then the first node is the root node. If the postorder

traversal is given then the last node is the root node. Once the root node is identified,

all the nodes in the left sub-trees and right sub-trees of the root node can be identified

using inorder.

Same technique can be applied repeatedly to form sub-trees.

• P reo rde r t ra v e rs a l y ie lds:

A, B, D, G , K, H, L, M , C , E

• Po sto rder t rav ars a l y ields:

K, G , L, M , H, D, B, E, C , A

• Ino rder t rav ars a l y ields:
K, G , D, L, H, M , B, A, E, C

• Level o rde r travers a l yields:

A, B, C , D, E, G , H, K, L, M

A

B C

D E

G H

K L M

• P reo rde r t ra v e rs a l y ie lds:

2 , 7, 2, 6, 5, 11, 5, 9, 4

• Po sto rder t rav ars a l y ields:

2 , 5, 11, 6, 7, 4, 9, 5, 2

• Ino rder t rav ars a l y ields:

2 , 7, 5, 6, 11, 2, 5, 4, 9

• Level o rde r travers a l yields:

2 , 7, 5, 2, 6, 9, 5, 11, 4

2

7 5

2 6 9

5 11 4

Lecture Notes: M. ANANTHA LAKSMI

11 Dept. of CSE, RCEW

A

B H E I C F

D G

It can be noted that, for the purpose mentioned, two traversal are essential out of

which one should be inorder traversal and another preorder or postorder; alternatively,

given preorder and postorder traversals, binary tree cannot be obtained uniquely.

Example 1:

Construct a binary tree from a given preorder and inorder sequence:

Preorder: A B D G C E H I F

Inorder: D G B A H E I C F

Solution:

From Preorder sequence A B D G C E H I F, the root is: A

From Inorder sequence D G B A H E I C F, we get the left and right sub trees:

Left sub tree is: D G B

Right sub tree is: H E I C F

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G B:

From the preorder sequence B D G, the root of tree is: B

From the inorder sequence D G B, we can find that D and G are to the left of B.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G:

From the preorder sequence D G, the root of the tree is: D

From the inorder sequence D G, we can find that there is no left node to D and G is at

the right of D.

A

D G B H E I C F

Lecture Notes: M. ANANTHA LAKSMI

12 Dept. of CSE, RCEW

The Binary tree upto this point looks like:

To find the root, left and right sub trees for H E I C F:

From the preorder sequence C E H I F, the root of the left sub tree is: C

From the inorder sequence H E I C F, we can find that H E I are at the left of C and F is

at the right of C.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for H E I:

From the preorder sequence E H I, the root of the tree is: E

From the inorder sequence H E I, we can find that H is at the left of E and I is at the

right of E.

The Binary tree upto this point looks like:

Example 2:

Construct a binary tree from a given postorder and inorder sequence:

Inorder: D G B A H E I C F
Postorder: G D B H I E F C A

A

B C

D E F

G H I

A

B C

D H E I F

G

A

B H E I C F

D

G

Lecture Notes: M. ANANTHA LAKSMI

13 Dept. of CSE, RCEW

Solution:

From Postorder sequence G D B H I E F C A, the root is: A

From Inorder sequence D G B A H E I C F, we get the left and right sub trees:

Left sub tree is: D G B
Right sub tree is: H E I C F

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G B:

From the postorder sequence G D B, the root of tree is: B

From the inorder sequence D G B, we can find that D G are to the left of B and there is

no right subtree for B.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for D G:

From the postorder sequence G D, the root of the tree is: D

From the inorder sequence D G, we can find that is no left subtree for D and G is to the

right of D.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for H E I C F:

From the postorder sequence H I E F C, the root of the left sub tree is: C

From the inorder sequence H E I C F, we can find that H E I are to the left of C and F is

the right subtree for C.

A

B H E I C F

D

G

A

B H E I C F

D G

A

D G B H E I C F

Lecture Notes: M. ANANTHA LAKSMI

14 Dept. of CSE, RCEW

The Binary tree upto this point looks like:

To find the root, left and right sub trees for H E I:

From the postorder sequence H I E, the root of the tree is: E

From the inorder sequence H E I, we can find that H is left subtree for E and I is to the

right of E.

The Binary tree upto this point looks like:

Example 3:

Construct a binary tree from a given preorder and inorder sequence:

Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9
Preorder: n6 n2 n1 n4 n3 n5 n9 n7 n8

Solution:

From Preorder sequence n6 n2 n1 n4 n3 n5 n9 n7 n8, the root is: n6

From Inorder sequence n1 n2 n3 n4 n5 n6 n7 n8 n9, we get the left and right sub

trees:

Left sub tree is: n1 n2 n3 n4 n5

Right sub tree is: n7 n8 n9

The Binary tree upto this point looks like:

n6

n1 n2 n3 n4 n5 n7 n8 n9

A

B C

D E F

G H I

A

B C

D H E I F

G

Lecture Notes: M. ANANTHA LAKSMI

15 Dept. of CSE, RCEW

To find the root, left and right sub trees for n1 n2 n3 n4 n5:

From the preorder sequence n2 n1 n4 n3 n5, the root of tree is: n2

From the inorder sequence n1 n2 n3 n4 n5, we can find that n1 is to the left of n2 and

n3 n4 n5 are to the right of n2. The Binary tree upto this point looks like:

To find the root, left and right sub trees for n3 n4 n5:

From the preorder sequence n4 n3 n5, the root of the tree is: n4

From the inorder sequence n3 n4 n5, we can find that n3 is to the left of n4 and n5 is

at the right of n4.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n7 n8 n9:

From the preorder sequence n9 n7 n8, the root of the left sub tree is: n9

From the inorder sequence n7 n8 n9, we can find that n7 and n8 are at the left of n9

and no right subtree of n9.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n7 n8:

From the preorder sequence n7 n8, the root of the tree is: n7

n6

n2
n9

n1 n4 n7 n8

n3 n5

n6

n2 n7 n8 n9

n1 n4

n3 n5

n6

n2 n7 n8 n9

n1 n3 n4 n5

Lecture Notes: M. ANANTHA LAKSMI

16 Dept. of CSE, RCEW

From the inorder sequence n7 n8, we can find that is no left subtree for n7 and n8 is at

the right of n7.

The Binary tree upto this point looks like:

Example 4:

Construct a binary tree from a given postorder and inorder sequence:

Inorder: n1 n2 n3 n4 n5 n6 n7 n8 n9

Postorder: n1 n3 n5 n4 n2 n8 n7 n9 n6

Solution:

From Postorder sequence n1 n3 n5 n4 n2 n8 n7 n9 n6, the root is: n6

From Inorder sequence n1 n2 n3 n4 n5 n6 n7 n8 n9, we get the left and right sub

trees:

Left sub tree is: n1 n2 n3 n4 n5
Right sub tree is: n7 n8 n9

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n1 n2 n3 n4 n5:

From the postorder sequence n1 n3 n5 n4 n2, the root of tree is: n2

From the inorder sequence n1 n2 n3 n4 n5, we can find that n1 is to the left of n2 and

n3 n4 n5 are to the right of n2.

The Binary tree upto this point looks like:

n6

n2 n7 n8 n9

n1 n3 n4 n5

n6

n1 n2 n3 n4 n5 n7 n8 n9

n6

n2
n9

n1 n4 n7

n3 n5 n8

Lecture Notes: M. ANANTHA LAKSMI

17 Dept. of CSE, RCEW

To find the root, left and right sub trees for n3 n4 n5:

From the postorder sequence n3 n5 n4, the root of the tree is: n4

From the inorder sequence n3 n4 n5, we can find that n3 is to the left of n4 and n5 is

to the right of n4. The Binary tree upto this point looks like:

To find the root, left and right sub trees for n7 n8 and n9:

From the postorder sequence n8 n7 n9, the root of the left sub tree is: n9

From the inorder sequence n7 n8 n9, we can find that n7 and n8 are to the left of n9

and no right subtree for n9.

The Binary tree upto this point looks like:

To find the root, left and right sub trees for n7 and n8:

From the postorder sequence n8 n7, the root of the tree is: n7

From the inorder sequence n7 n8, we can find that there is no left subtree for n7 and

n8 is to the right of n7. The Binary tree upto this point looks like:

n6

n2 n9

n1 n4 n7

n3 n5 n8

n6

n2 n9

n1 n4 n7 n8

n3 n5

n6

n2 n7 n8 n9

n1 n4

n3 n5

Lecture Notes: M. ANANTHA LAKSMI

18 Dept. of CSE, RCEW

5.3.3. Binary Tree Creation and Traversal Using Arrays:

This program performs the following operations:

1. Creates a complete Binary Tree
2. Inorder traversal

3. Preorder traversal
4. Postorder traversal

5. Level order traversal

6. Prints leaf nodes

7. Finds height of the tree created

include <stdio.h>

include <stdlib.h>

struct tree

{

struct tree* lchild;

char data[10];

struct tree* rchild;

};

typedef struct tree node;

int ctr;

node *tree[100];

node* getnode()

{
node *temp ;

temp = (node*) malloc(sizeof(node));

printf("\n Enter Data: ");

scanf("%s",temp->data);

temp->lchild = NULL;

temp->rchild = NULL;

return temp;
}

void create_fbinarytree()

{
int j, i=0;

printf("\n How many nodes you want: ");

scanf("%d",&ctr);

tree[0] = getnode();

j = ctr;
j--;
do

{
if(j > 0) /* left child */

{

tree[i * 2 + 1] = getnode();

tree[i]->lchild = tree[i * 2 + 1];

j--;
}

if(j > 0) /* right child */

{

}

i++;
} while(j > 0);

}

tree[i * 2 + 2] = getnode();

j--;

tree[i]->rchild = tree[i * 2 + 2];

Lecture Notes: M. ANANTHA LAKSMI

19 Dept. of CSE, RCEW

void inorder(node *root)

{
if(root != NULL)

{

inorder(root->lchild);

printf("%3s",root->data);

inorder(root->rchild);
}

}

void preorder(node *root)

{
if(root != NULL)

{

printf("%3s",root->data);

preorder(root->lchild);

preorder(root->rchild);
}

}

void postorder(node *root)

{
if(root != NULL)

{

postorder(root->lchild);

postorder(root->rchild);

printf("%3s",root->data);
}

}

void levelorder()

{
int j;

for(j = 0; j < ctr; j++)

{
if(tree[j] != NULL)

printf("%3s",tree[j]->data);

}

}

void print_leaf(node *root)

{
if(root != NULL)

{

if(root->lchild == NULL && root->rchild == NULL)

printf("%3s ",root->data);

print_leaf(root->lchild);

print_leaf(root->rchild);
}

}

int height(node *root)

{
if(root == NULL)

{
return 0;

}

Lecture Notes: M. ANANTHA LAKSMI

20 Dept. of CSE, RCEW

if(root->lchild == NULL && root->rchild == NULL)

return 0;

else

}

return (1 + max(height(root->lchild), height(root->rchild)));

void main()

{

int i;

create_fbinarytree();

printf("\n Inorder Traversal: ");

inorder(tree[0]);

printf("\n Preorder Traversal: ");

preorder(tree[0]);

printf("\n Postorder Traversal: ");

postorder(tree[0]);

printf("\n Level Order Traversal: ");

levelorder();

printf("\n Leaf Nodes: ");

print_leaf(tree[0]);
printf("\n Height of Tree: %d ", height(tree[0]));

}

5.3.4. Binary Tree Creation and Traversal Using Pointers:

This program performs the following operations:

1. Creates a complete Binary Tree
2. Inorder traversal

3. Preorder traversal

4. Postorder traversal
5. Level order traversal

6. Prints leaf nodes

7. Finds height of the tree created
8. Deletes last node

9. Finds height of the tree created

include <stdio.h>

include <stdlib.h>

struct tree

{

struct tree* lchild;

char data[10];

struct tree* rchild;
};

typedef struct tree node;

node *Q[50];
int node_ctr;

node* getnode()

{
node *temp ;

temp = (node*) malloc(sizeof(node));

printf("\n Enter Data: ");

fflush(stdin);

scanf("%s",temp->data);

temp->lchild = NULL;

temp->rchild = NULL;

return temp;

}

Lecture Notes: M. ANANTHA LAKSMI

21 Dept. of CSE, RCEW

void create_binarytree(node *root)

{

char option;

node_ctr = 1;
if(root != NULL)

{

printf("\n Node %s has Left SubTree(Y/N)",root->data);

fflush(stdin);
scanf("%c",&option);

if(option=='Y' || option == 'y')

{

}

else

{

}

root->lchild = getnode();

node_ctr++;

create_binarytree(root->lchild);

root->lchild = NULL;

create_binarytree(root->lchild);

printf("\n Node %s has Right SubTree(Y/N) ",root->data);

fflush(stdin);
scanf("%c",&option);

if(option=='Y' || option == 'y')

{

}
else

{

}

}

}

root->rchild = getnode();

node_ctr++;

create_binarytree(root->rchild);

root->rchild = NULL;

create_binarytree(root->rchild);

void make_Queue(node *root,int parent)

{
if(root != NULL)

{

node_ctr++;

Q[parent] = root;

make_Queue(root->lchild,parent*2+1);

make_Queue(root->rchild,parent*2+2);
}

}

delete_node(node *root, int parent)

{

int index = 0;

if(root == NULL)
printf("\n Empty TREE ");

else

{

node_ctr = 0;

make_Queue(root,0);

index = node_ctr-1;

Q[index] = NULL;

parent = (index-1) /2;

if(2* parent + 1 == index)

Q[parent]->lchild = NULL;

Lecture Notes: M. ANANTHA LAKSMI

22 Dept. of CSE, RCEW

else

}

Q[parent]->rchild = NULL;

printf("\n Node Deleted ..");

}

void inorder(node *root)

{
if(root != NULL)

{

inorder(root->lchild);

printf("%3s",root->data);

inorder(root->rchild);
}

}

void preorder(node *root)

{
if(root != NULL)

{

printf("%3s",root->data);

preorder(root->lchild);

preorder(root->rchild);
}

}

void postorder(node *root)

{
if(root != NULL)

{

postorder(root->lchild);

postorder(root->rchild);

printf("%3s", root->data);
}

}

void print_leaf(node *root)

{
if(root != NULL)

{

if(root->lchild == NULL && root->rchild == NULL)

printf("%3s ",root->data);

print_leaf(root->lchild);

print_leaf(root->rchild);
}

}

int height(node *root)

{
if(root == NULL)

return -1;
else

}

return (1 + max(height(root->lchild), height(root->rchild)));

void print_tree(node *root, int line)

{

int i;

if(root != NULL)

{

print_tree(root->rchild,line+1);

printf("\n");

for(i=0;i<line;i++)

Lecture Notes: M. ANANTHA LAKSMI

23 Dept. of CSE, RCEW

printf(" ");

printf("%s", root->data);

print_tree(root->lchild,line+1);
}

}

void level_order(node *Q[],int ctr)

{
int i;

for(i = 0; i < ctr ; i++)

{
if(Q[i] != NULL)

printf("%5s",Q[i]->data);

}

}

int menu()

{

int ch;

clrscr();

printf("\n 1. Create Binary Tree ");

printf("\n 2. Inorder Traversal ");

printf("\n 3. Preorder Traversal ");

printf("\n 4. Postorder Traversal ");

printf("\n 5. Level Order Traversal");

printf("\n 6. Leaf Node ");

printf("\n 7. Print Height of Tree ");

printf("\n 8. Print Binary Tree ");

printf("\n 9. Delete a node ");

printf("\n 10. Quit ");

printf("\n Enter Your choice: ");

scanf("%d", &ch);

return ch;
}

void main()

{
int i,ch;

node *root = NULL;

do
{

ch = menu();

switch(ch)
{

case 1 :

if(root == NULL)

{

}
else

{

}

break;

case 2 :

root = getnode();

create_binarytree(root);

printf("\n Tree is already Created ..");

printf("\n Inorder Traversal: ");

inorder(root);

break;

case 3 :

printf("\n Preorder Traversal: ");

preorder(root);

break;

Lecture Notes: M. ANANTHA LAKSMI

24 Dept. of CSE, RCEW

case 4 :

printf("\n Postorder Traversal: ");

postorder(root);
break;

case 5:

printf("\n Level Order Traversal ..");

make_Queue(root,0);

level_order(Q,node_ctr);
break;

case 6 :

printf("\n Leaf Nodes: ");

print_leaf(root);

break;

case 7 :

printf("\n Height of Tree: %d ", height(root));

break;
case 8 :

printf("\n Print Tree \n");

print_tree(root, 0);

break;
case 9 :

case 10 :

exit(0);

}

delete_node(root,0);

break;

getch();
}while(1);

}

5.3.5. Non Recursive Traversal Algorithms:

At first glance, it appears that we would always want to use the flat traversal functions

since they use less stack space. But the flat versions are not necessarily better. For

instance, some overhead is associated with the use of an explicit stack, which may

negate the savings we gain from storing only node pointers. Use of the implicit function

call stack may actually be faster due to special machine instructions that can be used.

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the

stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to step

one.

Algorithm inorder()

{

stack[1] = 0

vertex = root
top: while(vertex ≠ 0)

{

push the vertex into the stack

vertex = leftson(vertex)

Lecture Notes: M. ANANTHA LAKSMI

25 Dept. of CSE, RCEW

}

pop the element from the stack and make it as vertex

while(vertex ≠ 0)

{

print the vertex node

if(rightson(vertex) ≠ 0)
{

vertex = rightson(vertex)

goto top
}

pop the element from the stack and made it as vertex

}

}

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if

any and process each vertex. The traversing ends after a vertex with no left

child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

Algorithm preorder()

{

stack[1] = 0

vertex = root.

while(vertex ≠ 0)

{

print vertex node

if(rightson(vertex) ≠ 0)

push the right son of vertex into the stack.

if(leftson(vertex) ≠ 0)

vertex = leftson(vertex)
else

}

}

pop the element from the stack and made it as vertex

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push –(right son of vertex) onto

stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a

negative node is popped, then ignore the sign and return to step one.

Lecture Notes: M. ANANTHA LAKSMI

26 Dept. of CSE, RCEW

Algorithm postorder()

{

stack[1] = 0

vertex = root

top: while(vertex ≠ 0)

{

push vertex onto stack

if(rightson(vertex) ≠ 0)

push – (vertex) onto stack

vertex = leftson(vertex)
}

pop from stack and make it as vertex

while(vertex > 0)

{
print the vertex node

pop from stack and make it as vertex

}

if(vertex < 0)

{

vertex = - (vertex)

goto top
}

}

Example 1:

Traverse the following binary tree in pre, post and inorder using non-recursive

traversing algorithm.

Bin a ry T re e Pre, P o st a n d In ord er T rav ers in g

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the

stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to step

one.

• P reo rde r t ra v e rs a l y ie lds:

A, B, D, G , K, H, L, M , C , E

• Po sto rder t rav ars a l y ields:

K, G , L, M , H, D, B, E, C , A

• Ino rder t rav ars a l y ields:

K, G , D, L, H, M , B, A, E, C

A

B C

D E

G H

K L M

Lecture Notes: M. ANANTHA LAKSMI

27 Dept. of CSE, RCEW

CURRENT

VERTEX
STACK PROCESSED NODES REMARKS

A 0 PUSH 0

 0 A B D G K PUSH the left most path of A

K 0 A B D G K POP K

G 0 A B D K G POP G since K has no right son

D 0 A B K G D POP D since G has no right son

H 0 A B K G D Make the right son of D as vertex

 0 A B H L K G D PUSH the leftmost path of H

L 0 A B H K G D L POP L

H 0 A B K G D L H POP H since L has no right son

M 0 A B K G D L H Make the right son of H as vertex

 0 A B M K G D L H PUSH the left most path of M

M 0 A B K G D L H M POP M

B 0 A K G D L H M B POP B since M has no right son

A 0 K G D L H M B A Make the right son of A as vertex

C 0 C E K G D L H M B A PUSH the left most path of C

E 0 C K G D L H M B A E POP E

C 0 K G D L H M B A E C Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push –(right son of vertex) onto

stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a

negative node is popped, then ignore the sign and return to step one.

CURRENT

VERTEX
STACK PROCESSED NODES REMARKS

A 0 PUSH 0

 0 A –C B D –H G K PUSH the left most path of A with a

-ve for right sons

 0 A –C B D –H K G POP all +ve nodes K and G

H 0 A –C B D K G Pop H

Lecture Notes: M. ANANTHA LAKSMI

28 Dept. of CSE, RCEW

 0 A –C B D H –M L K G
PUSH the left most path of H with a

-ve for right sons

L 0 A –C B D H –M K G L POP all +ve nodes L

M 0 A –C B D H K G L Pop M

 0 A –C B D H M K G L
PUSH the left most path of M with a
-ve for right sons

 0 A –C K G L M H D B POP all +ve nodes M, H, D and B

C 0 A K G L M H D B Pop C

 0 A C E K G L M H D B
PUSH the left most path of C with a

-ve for right sons

 0 K G L M H D B E C A POP all +ve nodes E, C and A

 0 K G L M H D B E C A Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if

any and process each vertex. The traversing ends after a vertex with no left

child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

CURRENT

VERTEX
STACK PROCESSED NODES REMARKS

A 0 PUSH 0

 0 C H A B D G K
PUSH the right son of each vertex onto stack and

process each vertex in the left most path

H 0 C A B D G K POP H

 0 C M A B D G K H L
PUSH the right son of each vertex onto stack and

process each vertex in the left most path

M 0 C A B D G K H L POP M

0 C

A B D G K H L M

PUSH the right son of each vertex onto stack and

process each vertex in the left most path; M has

no left path

C 0 A B D G K H L M Pop C

0

A B D G K H L M C E

PUSH the right son of each vertex onto stack and

process each vertex in the left most path; C has

no right son on the left most path

 0 A B D G K H L M C E Stop since stack is empty

Lecture Notes: M. ANANTHA LAKSMI

29 Dept. of CSE, RCEW

Example 2:

Traverse the following binary tree in pre, post and inorder using non-recursive

traversing algorithm.

Bin a ry T re e Pre, P o st a n d In ord er T rav ers in g

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the

stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to step

one.

CURRENT VERTEX STACK PROCESSED NODES REMARKS

2 0

 0 2 7 2

2 0 2 7 2

7 0 2 2 7

6 0 2 6 5 2 7

5 0 2 6 2 7 5

6 0 2 2 7 5 6

11 0 2 11 2 7 5 6

11 0 2 2 7 5 6 11

2 0 2 7 5 6 11 2

5 0 5 2 7 5 6 11 2

5 0 2 7 5 6 11 2 5

9 0 9 4 2 7 5 6 11 2 5

4 0 9 2 7 5 6 11 2 5 4

9 0 2 7 5 6 11 2 5 4 9 Stop since stack is empty

• P reo rde r t ra v e rs a l y ie lds:

2 , 7, 2, 6, 5, 11, 5, 9, 4

• Po sto rder t rav ars a l y ields:

2 , 5, 11, 6, 7, 4, 9, 5, 2

• Ino rder t rav ars a l y ields:

2 , 7, 5, 6, 11, 2, 5, 4, 9

2

7 5

2 6 9

5 11 4

Lecture Notes: M. ANANTHA LAKSMI

30 Dept. of CSE, RCEW

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push –(right son of vertex) onto

stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a

negative node is popped, then ignore the sign and return to step one.

CURRENT VERTEX STACK PROCESSED NODES REMARKS

2 0

 0 2 –5 7 –6 2

2 0 2 –5 7 –6 2

6 0 2 –5 7 2

 0 2 –5 7 6 –11 5 2

5 0 2 –5 7 6 –11 2 5

11 0 2 –5 7 6 11 2 5

 0 2 –5 2 5 11 6 7

5 0 2 5 –9 2 5 11 6 7

9 0 2 5 9 4 2 5 11 6 7

 0 2 5 11 6 7 4 9 5 2 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if

any and process each vertex. The traversing ends after a vertex with no left

child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

CURRENT VERTEX STACK PROCESSED NODES REMARKS

2 0

 0 5 6 2 7 2

6 0 5 11 2 7 2 6 5

11 0 5 2 7 2 6 5 11

 0 5 2 7 2 6 5 11

5 0 9 2 7 2 6 5 11 5

9 0 2 7 2 6 5 11 5 9 4

 0 2 7 2 6 5 11 5 9 4 Stop since stack is empty

Lecture Notes: M. ANANTHA LAKSMI

31 Dept. of CSE, RCEW

5.4. Expression Trees:

Expression tree is a binary tree, because all of the operations are binary. It is also

possible for a node to have only one child, as is the case with the unary minus

operator. The leaves of an expression tree are operands, such as constants or variable

names, and the other (non leaf) nodes contain operators.

Once an expression tree is constructed we can traverse it in three ways:

 Inorder Traversal

 Preorder Traversal

 Postorder Traversal

Figure 5.4.1 shows some more expression trees that represent arithmetic expressions

given in infix form.

Figure 5.4.1 Expression Trees

An expression tree can be generated for the infix and postfix expressions.

An algorithm to convert a postfix expression into an expression tree is as follows:

1. Read the expression one symbol at a time.

2. If the symbol is an operand, we create a one-node tree and push a pointer

to it onto a stack.

3. If the symbol is an operator, we pop pointers to two trees T1 and T2 from

the stack (T1 is popped first) and form a new tree whose root is the operator

and whose left and right children point to T2 and T1 respectively. A pointer

to this new tree is then pushed onto the stack.

+ +

+ / + d

a b c d + c

(a) (a + b) + (c / d)
a b

(b) ((a + b) + c) + d

/

+ *

- + + *

a x y b c a

(c) ((-a) + (x + y)) / ((+b) * (c * a))

Lecture Notes: M. ANANTHA LAKSMI

32 Dept. of CSE, RCEW

a

b

Example 1:

Construct an expression tree for the postfix expression: a b + c d e + * *

Solution:

The first two symbols are operands, so we create one-node trees and push pointers to

them onto a stack.

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a

pointer to it is pushed onto the stack.

Next, c, d, and e are read, and for each one–node tree is created and a pointer to the

corresponding tree is pushed onto the stack.

Now a ‘+’ is read, so two trees are merged.

+

+ c +

a b b d e

+

a b c d e

+

a b

Lecture Notes: M. ANANTHA LAKSMI

33 Dept. of CSE, RCEW

Continuing, a ‘*’ is read, so we pop two tree pointers and form a new tree with a ‘*’ as

root.

Finally, the last symbol is read, two trees are merged, and a pointer to the final tree is

left on the stack.

For the above tree:

Inorder form of the expression: a + b * c * d + e

Preorder form of the expression: * + a b * c + d e

Postorder form of the expression: a b + c d e + * *

Example 2:

Construct an expression tree for the arithmetic expression:

(A + B * C) – ((D * E + F) / G)

Solution:

First convert the infix expression into postfix notation. Postfix notation of the arithmetic

expression is: A B C * + D E * F + G / -

The first three symbols are operands, so we create one-node trees and pointers to

three nodes pushed onto the stack.

+

*

+ *

a b c +

d e
e

+

+ *

a b c +

d ee

Lecture Notes: M. ANANTHA LAKSMI

34 Dept. of CSE, RCEW

A

B

C

*

B C

A

+ D

A
*

B C

E

Next, a ‘*’ is read, so two pointers to trees are popped, a new tree is formed, and a

pointer to it is pushed onto the stack.

Next, a ‘+’ is read, so two pointers to trees are popped, a new tree is formed, and a

pointer to it is pushed onto the stack.

Next, D and E are read, and for each one–node tree is created and a pointer to the

corresponding tree is pushed onto the stack.

Continuing, a ‘*’ is read, so we pop two tree pointers and form a new tree with a ‘*’ as

root.

+ *

A * D E

B C

+

A
*

B C

Lecture Notes: M. ANANTHA LAKSMI

35 Dept. of CSE, RCEW

Proceeding similar to the previous steps, finally, when the last symbol is read, the

expression tree is as follows:

5.4.1. Converting expressions with expression trees:

Let us convert the following expressions from one type to another. These can be as

follows:

1. Postfix to infix
2. Postfix to prefix

3. Prefix to infix

4. Prefix to postfix

1. Postfix to Infix:

The following algorithm works for the expressions whose infix form does not require

parenthesis to override conventional precedence of operators.

A. Create the expression tree from the postfix expression

B. Run inorder traversal on the tree.

2. Postfix to Prefix:

The following algorithm works for the expressions to convert postfix to prefix:

A. Create the expression tree from the postfix expression

B. Run preorder traversal on the tree.

3. Prefix to Infix:

The following algorithm works for the expressions whose infix form does not require

parenthesis to override conventional precedence of operators.

A. Create the expression tree from the prefix expression

B. Run inorder traversal on the tree.

+

-

+ /

A * + G

B C * F

D E

Lecture Notes: M. ANANTHA LAKSMI

36 Dept. of CSE, RCEW

4. Prefix to postfix:

The following algorithm works for the expressions to convert postfix to prefix:

A. Create the expression tree from the prefix expression

B. Run postorder traversal on the tree.

5.5. Threaded Binary Tree:

The linked representation of any binary tree has more null links than actual pointers. If

there are 2n total links, there are n+1 null links. A clever way to make use of these null

links has been devised by A.J. Perlis and C. Thornton.

Their idea is to replace the null links by pointers called Threads to other nodes in the

tree.

If the RCHILD(p) is normally equal to zero, we will replace it by a pointer to the node

which would be printed after P when traversing the tree in inorder.

A null LCHILD link at node P is replaced by a pointer to the node which immediately

precedes node P in inorder. For example, Let us consider the tree:

The Threaded Tree corresponding to the above tree is:

The tree has 9 nodes and 10 null links which have been replaced by Threads. If we

traverse T in inorder the nodes will be visited in the order H D I B E A F C G.

For example, node ‘E’ has a predecessor Thread which points to ‘B’ and a successor

Thread which points to ‘A’. In memory representation Threads and normal pointers are

distinguished between as by adding two extra one bit fields LBIT and RBIT.

LBIT(P) = 1 if LCHILD(P) is a normal pointer

LBIT(P) = 0 if LCHILD(P) is a Thread

RBIT(P) = 1 if RCHILD(P) is a normal pointer

RBIT(P) = 0 if RCHILD(P) is a Thread

A

B C

D E F G

H I

A

B C

D E F G

H I

Lecture Notes: M. ANANTHA LAKSMI

37 Dept. of CSE, RCEW

1 - 1

0 G 0

0 H 0

0 E 0 0 F 0

1 B 1

0 I 0

In the above figure two threads have been left dangling in LCHILD(H) and RCHILD(G).

In order to have no loose Threads we will assume a head node for all threaded binary

trees. The Complete memory representation for the tree is as follows. The tree T is the

left sub-tree of the head node.

LBIT LCHILD DATA RCHILD RBIT

1 A 1

1 C 1

1 D 1

5.6. Binary Search Tree:

A binary search tree is a binary tree. It may be empty. If it is not empty then it

satisfies the following properties:

1. Every element has a key and no two elements have the same key.

2. The keys in the left subtree are smaller than the key in the root.

3. The keys in the right subtree are larger than the key in the root.

4. The left and right subtrees are also binary search trees.

Figure 5.2.5(a) is a binary search tree, whereas figure 5.2.5(b) is not a binary search

tree.

Figure 5.2.5. Examples of binary search trees

16 16

12 20 12 20

11 14 19 11 14 19

13 13 17

Binary Search Tree

(a)

Not a Binary Search Tree

(b)

Lecture Notes: M. ANANTHA LAKSMI

38 Dept. of CSE, RCEW

5.7. General Trees (m-ary tree):

If in a tree, the outdegree of every node is less than or equal to m, the tree is called

general tree. The general tree is also called as an m-ary tree. If the outdegree of every

node is exactly equal to m or zero then the tree is called a full or complete m-ary tree.

For m = 2, the trees are called binary and full binary trees.

Differences between trees and binary trees:

TREE BINARY TREE

Each element in a tree can have any

number of subtrees.

Each element in a binary tree has at most

two subtrees.

The subtrees in a tree are unordered. The subtrees of each element in a binary

tree are ordered (i.e. we distinguish

between left and right subtrees).

5.7.1. Converting a m-ary tree (general tree) to a binary tree:

There is a one-to-one mapping between general ordered trees and binary trees. So,

every tree can be uniquely represented by a binary tree. Furthermore, a forest can also

be represented by a binary tree.

Conversion from general tree to binary can be done in two stages.

Stage 1:

 As a first step, we delete all the branches originating in every node except

the left most branch.

 We draw edges from a node to the node on the right, if any, which is

situated at the same level.

Stage 2:

 Once this is done then for any particular node, we choose its left and right

sons in the following manner:

 The left son is the node, which is immediately below the given node,

and the right son is the node to the immediate right of the given node

on the same horizontal line. Such a binary tree will not have a right

subtree.

Lecture Notes: M. ANANTHA LAKSMI

39 Dept. of CSE, RCEW

Example 1:

Convert the following ordered tree into a binary tree:

Solution:

Stage 1 tree by using the above mentioned procedure is as follows:

Stage 2 tree by using the above mentioned procedure is as follows:

Example 2:

Construct a unique binary tree from the given forest.

7

8 9 10

11 12 11 30

1

2 3

4 5 6

1

2

6 3

7 8 4

5

9

10

11

1

2 3 4 5

6 7 8 9 10 11

1

2 3 4 5

6 7 8 9 10 11

Lecture Notes: M. ANANTHA LAKSMI

40 Dept. of CSE, RCEW

Solution:

Stage 1 tree by using the above mentioned procedure is as follows:

Stage 2 tree by using the above mentioned procedure is as follows (binary tree

representation of forest):

Example 3:

For the general tree shown below:

1. Find the corresponding binary tree T’.

2. Find the preorder traversal and the postorder traversal of T.

3. Find the preorder, inorder and postorder traversals of T’.

4. Compare them with the preorder and postorder traversals obtained for T’
with the general tree T.

A

B F J

C D E G H K L M N

Ge n e ra l t re e T
P Q

1

2 7

4 3 8

5 6 11

9
9

10

12

13

1 7

2 3 8 9 10

4 5 6 11 12 13

Lecture Notes: M. ANANTHA LAKSMI

41 Dept. of CSE, RCEW

Solution:

1. Stage 1:

The tree by using the above-mentioned procedure is as follows:

Stage 2:

The binary tree by using the above-mentioned procedure is as follows:

2. Suppose T is a general tree with root R and subtrees T1, T2, ………., TM. The

preorder traversal and the postorder traversal of T are:

Preorder: 1) Process the root R.

2) Traverse the subtree T1, T2, ……., TM in preorder.

Postorder: 1) Traverse the subtree T1, T2, ……., TM in postorder.
2) Process the root R.

The tree T has the root A and subtrees T1, T2 and T3 such that:

T1 consists of nodes B, C, D and E.

T2 consists of nodes F, G and H.

T3 consists of nodes J, K, L, M, N, P and Q.

A

B

C F

D G J

1E0 H K

L

Bin a rt t re e T ’

M

P N

Q

A

B F J

C D E G HB5 K L M N

P Q

Lecture Notes: M. ANANTHA LAKSMI

42 Dept. of CSE, RCEW

A. The preorder traversal of T consists of the following steps:

(i) Process root A.

(ii) Traverse T1 in preorder: Process nodes B, C, D, E.

(iii) Traverse T2 in preorder: Process nodes F, G, H.

(iv) Traverse T3 in preorder: Process nodes J, K, L, M, P, Q, N.

The preorder traversal of T is as follows:

A, B, C, D, E, F, G, H, J, K, L, M, P, Q, N

B. The postorder traversal of T consists of the following steps:

(i) Traverse T1 in postorder: Process nodes C, D, E, B.

(ii) Traverse T2 in postorder: Process nodes G, H, F.

(iii) Traverse T3 in postorder: Process nodes K, L, P, Q, M, N, J.

(iv) Process root A.

The postorder traversal of T is as follows:

C, D, E, B, G, H, F, K, L, P, Q, M, N, J, A

3. The preorder, inorder and postorder traversals of the binary tree T’ are as

follows:

Preorder: A, B, C, D, E, F, G, H, J, K, M, P, Q, N

Inorder: C, D, E, B, G, H, F, K, L, P, Q, M, N, J, A

Postorder: E, D, C, H, G, Q, P, N, M, L, K, J, F, B, A

4. Comparing the preorder and postorder traversals of T’ with the general tree T:

We can observer that the preorder of the binary tree T’ is identical to the

preorder of the general T.

The inorder traversal of the binary tree T’ is identical to the postorder traversal

of the general tree T.

There is no natural traversal of the general tree T which corresponds to the

postorder traversal of its corresponding binary tree T’.

5.8. Search and Traversal Techniques for m-ary trees:

Search involves visiting nodes in a tree in a systematic manner, and may or may not

result into a visit to all nodes. When the search necessarily involved the examination of

every vertex in the tree, it is called the traversal. Traversing of a tree can be done in

two ways.

1. Depth first search or traversal.

2. Breadth first search or traversal.

Lecture Notes: M. ANANTHA LAKSMI

43 Dept. of CSE, RCEW

5.8.1. Depth first search:

In Depth first search, we begin with root as a start state, then some successor of the

start state, then some successor of that state, then some successor of that and so on,

trying to reach a goal state. One simple way to implement depth first search is to use a

stack data structure consisting of root node as a start state.

If depth first search reaches a state S without successors, or if all the successors of a

state S have been chosen (visited) and a goal state has not get been found, then it

“backs up” that means it goes to the immediately previous state or predecessor

formally, the state whose successor was ‘S’ originally.

To illustrate this let us consider the tree shown below.

ST A RT

GO A L

Suppose S is the start and G is the only goal state. Depth first search will first visit S,

then A, then D. But D has no successors, so we must back up to A and try its second

successor, E. But this doesn’t have any successors either, so we back up to A again.

But now we have tried all the successors of A and haven’t found the goal state G so we

must back to ‘S’. Now ‘S’ has a second successor, B. But B has no successors, so we

back up to S again and choose its third successor, C. C has one successor, F. The first

successor of F is H, and the first of H is J. J doesn’t have any successors, so we back up

to H and try its second successor. And that’s G, the only goal state.

So the solution path to the goal is S, C, F, H and G and the states considered were in

order S, A, D, E, B, C, F, H, J, G.

Disadvantages:

1. It works very fine when search graphs are trees or lattices, but can get

struck in an infinite loop on graphs. This is because depth first search can

travel around a cycle in the graph forever.

To eliminate this keep a list of states previously visited, and never permit

search to return to any of them.

2. We cannot come up with shortest solution to the problem.

5.8.2. Breadth first search:

Breadth-first search starts at root node S and “discovers" which vertices are reachable

from S. Breadth-first search discovers vertices in increasing order of distance. Breadth-

first search is named because it visits vertices across the entire breadth.

D

A

E

J

S B

H G

C F
K

I

Lecture Notes: M. ANANTHA LAKSMI

44 Dept. of CSE, RCEW

0

To illustrate this let us consider the following tree:

ST A RT

GO A L

Breadth first search finds states level by level. Here we first check all the immediate

successors of the start state. Then all the immediate successors of these, then all the

immediate successors of these, and so on until we find a goal node. Suppose S is the

start state and G is the goal state. In the figure, start state S is at level 0; A, B and C

are at level 1; D, e and F at level 2; H and I at level 3; and J, G and K at level 4.

So breadth first search, will consider in order S, A, B, C, D, E, F, H, I, J and G and then

stop because it has reached the goal node.

Breadth first search does not have the danger of infinite loops as we consider states in

order of increasing number of branches (level) from the start state.

One simple way to implement breadth first search is to use a queue data structure

consisting of just a start state.

5.9. Sparse Matrices:

A sparse matrix is a two–dimensional array having the value of majority elements as

null. The density of the matrix is the number of non-zero elements divided by the total

number of matrix elements. The matrices with very low density are often good for use

of the sparse format. For example,

฀0 0
฀
฀0 2 A  ฀1 3

฀฀
฀0 0

0 5 ฀
฀

0 0 ฀
0 0฀

฀฀
4 ฀



As far as the storage of a sparse matrix is concerned, storing of null elements is

nothing but wastage of memory. So we should devise technique such that only non-null

elements will be stored. The matrix A produces:

(3, 1) 1

(2, 2) 2

S = (3, 2) 3

(4, 3) 4

(1, 4) 5

The printed output lists the non-zero elements of S, together with their row and column

indices. The elements are sorted by columns, reflecting the internal data structure.

In large number of applications, sparse matrices are involved. One approach is to use

the linked list.

D

A

E

J

S B

H G

C F
K

I

Lecture Notes: M. ANANTHA LAKSMI

45 Dept. of CSE, RCEW

The program to represent sparse matrix:

/* Check whether the given matrix is sparse matrix or not, if so then print in

alternative form for storage. */

include <stdio.h>

include <conio.h>

main()

{

int matrix[20][20], m, n, total_elements, total_zeros = 0, i, j;

clrscr();

printf("\n Enter Number of rows and columns: ");

scanf("%d %d",&m, &n);
total_elements = m * n;

printf("\n Enter data for sparse matrix: ");

for(i = 0; i < m ; i++)
{

for(j = 0; j < n ; j++)

{

scanf("%d", &matrix[i][j]);

if(matrix[i][j] == 0)
{

total_zeros++;

}

}

}

if(total_zeros > total_elements/2)

{
printf("\n Given Matrix is Sparse Matrix..");

printf("\n The Representaion of Sparse Matrix is: \n");

printf("\n Row \t Col \t Value ");
for(i = 0; i < m ; i++)

{

for(j = 0; j < n ; j++)

{

if(matrix[i][j] != 0)

{

}

}

}

}

else

printf("\n %d \t %d \t %d",i,j,matrix[i][j]);

printf("\n Given Matrix is Not a Sparse Matrix..");

}

Lecture Notes: M. ANANTHA LAKSMI

46 Dept. of CSE, RCEW

EXCERCISES

1. How many different binary trees can be made from three nodes that contain the

key value 1, 2, and 3?

2. a.

b.

Draw all the possible binary trees that have four leaves and all the nonleaf nodes

have no children.

Show what would be printed by each of the following.

An inorder traversal of the tree

A postorder traversal of the tree

A preorder traversal of the tree

3. a. Draw the binary search tree whose elements are inserted in the following order:

50 72 96 94 107 26 12 11 9 2 10 25 51 16 17 95

b. What is the height of the tree?

c. What nodes are on level?

d. Which levels have the maximum number of nodes that they could contain?

e. What is the maximum height of a binary search tree containing these nodes?

Draw such a tree?

f. What is the minimum height of a binary search tree containing these nodes?

Draw such a tree?

g. Show how the tree would look after the deletion of 29, 59 and 47?

h. Show how the (original) tree would look after the insertion of nodes containing

63, 77, 76, 48, 9 and 10 (in that order).

4. Write a “C” function to determine the height of a binary tree.

5. Write a “C” function to count the number of leaf nodes in a binary tree.

6. Write a “C” function to swap a binary tree.

7. Write a “C” function to compute the maximum number of nodes in any level of a

binary tree. The maximum number of nodes in any level of a binary tree is also

called the width of the tree.

8. Construct two binary trees so that their postorder traversal sequences are the

same.

9. Write a “C” function to compute the internal path length of a binary tree.

10. Write a “C” function to compute the external path length of a binary tree.

11. Prove that every node in a tree except the root node has a unique parent.

12. Write a “C” function to reconstruct a binary tree from its preorder and inorder

traversal sequences.

13. Prove that the inorder and postorder traversal sequences of a binary tree

uniquely characterize the binary tree. Write a “C” function to reconstruct a binary

tree from its postorder and inorder traversal sequences.

Lecture Notes: M. ANANTHA LAKSMI

47 Dept. of CSE, RCEW

14. Build the binary tree from the given traversal techniques:

A. Inorder:

Preorder:

g d h b e i a f j c

a b d g h e i c f j

B. Inorder:

Postorder:

g d h b e i a f j c

g h d i e b j f c a

C. Inorder:

Level order:

g d h b e i a f j c

a b c d e f g h i j

15. Build the binary tree from the given traversal techniques:

A. Inorder:

Preorder:

n1 n2 n3 n4 n5 n6 n7 n8 n9

n6 n2 n1 n4 n3 n5 n9 n7 n8

B. Inorder:

Postorder:

n1 n2 n3 n4 n5 n6 n7 n8 n9

n1 n3 n5 n4 n2 n8 n7 n9 n6

C. Inorder:

Level order:

n1 n2 n3 n4 n5 n6 n7 n8 n9

n6 n2 n9 n1 n4 n7 n3 n5 n8

16. Build the binary tree for the given inorder and preorder traversals:

Inorder: E A C K F H D B G

Preorder: F A E K C D H G B

17. Convert the following general tree represented as a binary tree:

3

1 7 10

12 15 13 14 8

11 4

5 9 2 6

16 17

Lecture Notes: M. ANANTHA LAKSMI

48 Dept. of CSE, RCEW

Multiple Choice Questions

1. The node that has no children is referred as: [C]
A. Parent node

B. Root node

C. Leaf node

D. Sibblings

2. A binary tree in which all the leaves are on the same level is called as: [B]
A. Complete binary tree

B. Full binary tree

C. Strictly binary tree

D. Binary search tree

3. How can the graphs be represented? [C]

 A. Adjacency matrix

 B. Adjacency list

 C. Incidence matrix

4.

D. All of the above

The children of a same parent node are called as:

[

C

]

A. adjacent node

B. non-leaf node

C. Sibblings

D. leaf node

5. A tree with n vertices, consists of edges. [A]
A. n – 1

B. n - 2

C. n

D. log n

6. The maximum number of nodes at any level is: [B]
A. n

B. 2n

C. n + 1

D. 2n

FI GUR E 1

7. For the Binary tree shown in fig. 1, the in-order traversal sequence is: [C]

A. A B C D E F G H I J K

B. H I D E B F J K G C A

C. H D I B E A F C J G K

D. A B D H I E C F G J K

8. For the Binary tree shown in fig. 1, the pre-order traversal sequence is: [D]
A. A B C D E F G H I J K

B. H I D E B F J K G C A

C. H D I B E A F C J G K

D. A B D H I E C F G J K

9. For the Binary tree shown in fig. 1, the post-order traversal sequence is: [B]
A. A B C D E F G H I J K

B. H I D E B F J K G C A

C. H D I B E A F C J G K

D. A B D H I E C F G J K

A

B C

D E F G

H I J K

Lecture Notes: M. ANANTHA LAKSMI

49 Dept. of CSE, RCEW

FIGURE 2 and its adjacency list

10. Which is the correct order for Kruskal’s minimum spanning tree algorithm

to add edges to the minimum spanning tree for the figure 2 shown above:
A. (A, B) then (A, C) then (A, D) then (D, E) then (C, F) then (D, G)

B. (A, D) then (E, G) then (B, D) then (D, E) then (F, G) then (A, C)

C. both A and B

D. none of the above

[B]

11. For the figure 2 shown above, the cost of the minimal spanning tree is: [A]
A. 57

B. 68

C. 48

D. 32

FIGURE 3

12. For the figure 3, how many leaves does it have? [B]
A. 2

B. 4

C. 6

D. 8

13. For the figure 3, how many of the nodes have at least one sibling? [A]
A. 5

B. 6

C. 7

D. 8

14. For the figure 3, How many descendants does the root have? [D]
A. 0

B. 2

C. 4

D. 8

15. For the figure 3, what is the depth of the tree? [B]

A. 2

B. 3

C. 4

D. 8

16. For the figure 3, which statement is correct?

A. The tree is neither complete nor full.

B. The tree is complete but not full.

C. The tree is full but not complete.

D. The tree is both full and complete.

[A]

Node Adjacency List

A B C D

B A D E

C A D F

D A B C E F G

E B D G

F C D G

G F D E

20
A B

23 1
4 15

36 9
C D E

25 16
28

3

F G
17

14

2 11

1 3 10 30

7 40

Lecture Notes: M. ANANTHA LAKSMI

50 Dept. of CSE, RCEW

17. There is a tree in the box at the top of this section. What is the order of []

nodes visited using a pre-order traversal?
A. 1 2 3 7 10 11 14 30 40

B. 1 2 3 14 7 10 11 40 30

C. 1 3 2 7 10 40 30 11 14

D. 14 2 1 3 11 10 7 30 40

18. There is a tree in the box at the top of this section. What is the order of []

nodes visited using an in-order traversal?
A. 1 2 3 7 10 11 14 30 40

B. 1 2 3 14 7 10 11 40 30

C. 1 3 2 7 10 40 30 11 14

D. 14 2 1 3 11 10 7 30 40

19. There is a tree in the box at the top of this section. What is the order of []

nodes visited using a post-order traversal?
A. 1 2 3 7 10 11 14 30 40

B. 1 2 3 14 7 10 11 40 30

C. 1 3 2 7 10 40 30 11 14

D. 14 2 1 3 11 10 7 30 40

20. What is the minimum number of nodes in a full binary tree with depth 3? [D]
A. 3

B. 4

C. 8

D. 15

21. Select the one true statement.
A. Every binary tree is either complete or full.

B. Every complete binary tree is also a full binary tree.

C. Every full binary tree is also a complete binary tree.

D. No binary tree is both complete and full.

[C]

22. Suppose T is a binary tree with 14 nodes. What is the minimum possible

depth of T?

[B]

A. 0

B. 3

C. 4

D. 5

23. Select the one FALSE statement about binary trees:
A. Every binary tree has at least one node.

B. Every non-empty tree has exactly one root node.

C. Every node has at most two children.

D. Every non-root node has exactly one parent.

[A]

24. Consider the node of a complete binary tree whose value is stored in

data[i] for an array implementation. If this node has a right child, where

will the right child's value be stored?

[C]

A. data[i+1]

B. data[i+2]

C. data[2*i + 1]

D. data[2*i + 2]

Figure 4

14

2 16

1 5

4

Lecture Notes: M. ANANTHA LAKSMI

51 Dept. of CSE, RCEW

5

3 7

2 6

5

3 2

7 6

25. For the binary search tree shown in figure 4, Suppose we remove the root,

replacing it with something from the left subtree. What will be the new

root?

[D]

A. 1

B. 2

C. 4

D. 5

E. 16

Tree

26. Which traversals of tree 1 and tree 2, will produce the same sequence of

node names?

[C]

A. Preorder, Postorder

B. Postorder, Postorder

C. Postorder, Inorder

D. Inorder, Inorder

27. Which among the following is not a binary search tree? [C]

A. C.

B. D.
14

2 16

1 5

4

A

B C

D

E F

G H

I

Tree 1
J

G

2 F

E C

I D A

J H B

5

4 7

3 6

Lecture Notes: M. ANANTHA LAKSMI

52 Dept. of CSE, RCEW

5

28. For the binary search tree shown in figure 5, after deleting 23 from the []

binary search tree what node will be at the root?
A. 11

B. 25

C. 27

D. 14

29. For the binary search tree shown in figure 5, after deleting 23 from the

binary search tree what parent child pair does not occur in the tree?

[B]

A. 25 27

B. 27 11

C. 11 7

D. 7 9
30. The number of nodes in a complete binary tree of depth d is: [B]

A. 2d

B. 2k - 1

C. 2k

D. none of the above

31. The depth of a complete binary tree with n nodes is: [C]
A. log n

B. n2

C.   log2 n + 1

D. 2n

32. If the inorder and preorder traversal of a binary tree are D, B, F, E, G, H, A,

C and A, B, D, E, F, G, H, C respectively then, the postorder traversal of

that tree is:

[A]

A. D, F, H, G, E, B, C, A

B. D, F, G, A, B, C, H, E

C. F, H, D, G, E, B, C, A

D. D, F, H, G, E, B, C, A

33. The data structure used by level order traversal of binary tree is: [A]
A. Queue

B. Stack

C. linked list

D. none of the above

23

11 27

7 17 25

6 9 14 FI GUR E

Lecture Notes: M. ANANTHA LAKSMI

1 Dept. of CSE, RCEW

UNIT - 3

Part - 1

Graphs

6.1. Introduction to Graphs:

Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges.

We will often denote n = |V|, e = |E|.

A graph is generally displayed as figure 6.5.1, in which the vertices are represented by

circles and the edges by lines.

An edge with an orientation (i.e., arrow head) is a directed edge, while an edge with no

orientation is our undirected edge.

If all the edges in a graph are undirected, then the graph is an undirected graph. The

graph in figure 6.5.1(a) is an undirected graph. If all the edges are directed; then the

graph is a directed graph. The graph of figure 6.5.1(b) is a directed graph. A directed

graph is also called as digraph. A graph G is connected if and only if there is a simple

path between any two nodes in G.

A graph G is said to be complete if every node a in G is adjacent to every other node v

in G. A complete graph with n nodes will have n(n-1)/2 edges. For example, Figure

6.5.1.(a) and figure 6.5.1.(d) are complete graphs.

A directed graph G is said to be connected, or strongly connected, if for each pair (u, v)

for nodes in G there is a path from u to v and also a path from v to u. On the other

hand, G is said to be unilaterally connected if for any pair (u, v) of nodes in G there is a

path from u to v or a path from v to u. For example, the digraph shown in figure 6.5.1
(e) is strongly connected.

B D

A B
v1

A C E G

E
v4 v2

C D

(a)
F

(b) v3 (c)

v1 v1 v1 v1

v4 v2

v4 v2

v4 v2
v2 v3

(d)
v3

(e)
v3

(f) (g)
v3

v4 v5 v6 v7

Figure 6.5.1 Various Graphs

We can assign weight function to the edges: wG(e) is a weight of edge e E. The graph

which has such function assigned is called weighted graph.

Lecture Notes: M. ANANTHA LAKSMI

2 Dept. of CSE, RCEW

The number of incoming edges to a vertex v is called in–degree of the vertex (denote

indeg(v)). The number of outgoing edges from a vertex is called out-degree (denote

outdeg(v)). For example, let us consider the digraph shown in figure 6.5.1(f),

indegree(v1) = 2 outdegree(v1) = 1

indegree(v2) = 2 outdegree(v2) = 0

A path is a sequence of vertices (v1, v2, , vk), where for all i, (vi, vi+1) E. A path

is simple if all vertices in the path are distinct. If there is a path containing one or more

edges which starts from a vertex Vi and terminates into the same vertex then the path

is known as a cycle. For example, there is a cycle in figure 6.5.1(a), figure 6.5.1(c) and

figure 6.5.1(d).

If a graph (digraph) does not have any cycle then it is called acyclic graph. For

example, the graphs of figure 6.5.1 (f) and figure 6.5.1 (g) are acyclic graphs.

A graph G’ = (V’, E’) is a sub-graph of graph G = (V, E) iff V’  V and E’  E.

A Forest is a set of disjoint trees. If we remove the root node of a given tree then it

becomes forest. The following figure shows a forest F that consists of three trees T1, T2

and T3.

A Forest F

A graph that has either self loop or parallel edges or both is called multi-graph.

Tree is a connected acyclic graph (there aren’t any sequences of edges that go around

in a loop). A spanning tree of a graph G = (V, E) is a tree that contains all vertices of V

and is a subgraph of G. A single graph can have multiple spanning trees.

Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.

2. If any edge is removed from T, then T becomes disconnected.

3. If we add any edge into T, then the new graph will contain a cycle.

4. Number of edges in T is n-1.

A P X

B D Y
Q R

Z
T1 C E F T2 T3

Lecture Notes: M. ANANTHA LAKSMI

3 Dept. of CSE, RCEW

1

G1:
2 3

(a) 4 5 (b)

G2:
B

4
D

3 2
1 4

A C
4

2

E
1

G
6

2 2 1
(a)

F
(b)

6.2. Representation of Graphs:

There are two ways of representing digraphs. They are:

 Adjacency matrix.

 Adjacency List.

 Incidence matrix.

Adjacency matrix:

In this representation, the adjacency matrix of a graph G is a two dimensional n x n

matrix, say A = (ai,j), where

a i, j

 1
if



there is an edge from vi to v j

0 otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the

graph is directed. This matrix is also called as Boolean matrix or bit matrix.

 1 2 3 4 5

1 0 1 1 0 1
2 0 0 1 1 1

3 0 0 0 1 0

4 0 0 0 0 0

5 0 0 1 1 0

Figure 6.5.2. A graph and its Adjacency matrix

Figure 6.5.2(b) shows the adjacency matrix representation of the graph G1 shown in

figure 6.5.2(a). The adjacency matrix is also useful to store multigraph as well as

weighted graph. In case of multigraph representation, instead of entry 0 or 1, the entry

will be between number of edges between two vertices.

In case of weighted graph, the entries are weights of the edges between the vertices.

The adjacency matrix for a weighted graph is called as cost adjacency matrix. Figure

6.5.3(b) shows the cost adjacency matrix representation of the graph G2 shown in

figure 6.5.3(a).

 A B C D E F G

A 0 3 6    
B 3 0 2 4   
C 6 2 0 1 4 2 
D  4 1 0 2  4

E   4 2 0 2 1

F   2  2 0 1

G    4 1 1 0

Figure 6.5.3 Weighted graph and its Cost adjacency matrix

Lecture Notes: M. ANANTHA LAKSMI

4 Dept. of CSE, RCEW

1 2 3

3

2

1 2 3

1
1

2
2

3 3

(a) Adjacency Matrix (b) Adjacency List

B
c

D

a
b

d

A C
h

e

E
i

g

k
j

(a)
F

Adjacency List:

In this representation, the n rows of the adjacency matrix are represented as n linked

lists. An array Adj[1, 2, n] of pointers where for 1 < v < n, Adj[v] points to a

linked list containing the vertices which are adjacent to v (i.e. the vertices that can be

reached from v by a single edge). If the edges have weights then these weights may

also be stored in the linked list elements. For the graph G in figure 6.5.4(a), the

adjacency list in shown in figure 6.5.4 (b).

1 1

1

0

0 1

0 1

0

Figure 6.5.4 Adjacency matrix and adjacency list

Incidence Matrix:

In this representation, if G is a graph with n vertices, e edges and no self loops, then

incidence matrix A is defined as an n by e matrix, say A = (ai,j), where

a i, j
1

if


there is an edge j incident to vi

0 otherwise

Here, n rows correspond to n vertices and e columns correspond to e edges. Such a

matrix is called as vertex-edge incidence matrix or simply incidence matrix.

 a b c d e f g h i j k l

f A 1 0 0 0 0 0 1 0 0 0 0 0

 B 1 1 1 0 0 0 0 0 0 0 0 0

 G C 0 1 0 1 0 0 1 1 0 0 1 0

 D 0 0 1 1 1 1 0 0 0 0 0 0
l E 0 0 0 0 1 0 0 1 1 1 0 0

 (b) F 0 0 0 0 0 0 0 0 0 1 1 1

 G 0 0 0 0 0 1 0 0 1 0 0 1

Figure 6.5.4 Graph and its incidence matrix

Figure 6.5.4(b) shows the incidence matrix representation of the graph G1 shown in

figure 6.5.4(a).

Lecture Notes: M. ANANTHA LAKSMI

5 Dept. of CSE, RCEW

6.3. Minimum Spanning Tree (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the

vertex set of the given graph, and whose edge set is a subset of the edge set of the

given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum

spanning tree (MST) is a spanning tree with the smallest possible weight.

Example:

A w e ig ht e d gra p h G: T h e mini ma l s p a nning t re e fro m w e ig ht e d gra p h G:

Let's consider a couple of real-world examples on minimum spanning tree:

 One practical application of a MST would be in the design of a network. For

instance, a group of individuals, who are separated by varying distances,

wish to be connected together in a telephone network. Although MST cannot

do anything about the distance from one connection to another, it can be

used to determine the least cost paths with no cycles in this network,

thereby connecting everyone at a minimum cost.

 Another useful application of MST would be finding airline routes. The

vertices of the graph would represent cities, and the edges would represent

routes between the cities. MST can be applied to optimize airline routes by

finding the least costly paths with no cycles.

Minimum spanning tree, can be constructed using any of the following two algorithms:

1. Kruskal’s algorithm and

2. Prim’s algorithm.

Both algorithms differ in their methodology, but both eventually end up with the

MST. Kruskal's algorithm uses edges, and Prim’s algorithm uses vertex connections in

determining the MST. In Prim’s algorithm at any instance of output it represents tree
whereas in Kruskal’s algorithm at any instance of output it may represent tree or not.

2

4

G: 3 5

6

1

2

3

1

G:

A gra p h G:

T hre e (of ma ny p o s s ib le) s p a nning t re e s fro m gra p h G:

Lecture Notes: M. ANANTHA LAKSMI

6 Dept. of CSE, RCEW

6.3.1. Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e.

picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges

have been added. Sometimes two or more edges may have the same cost.

The order in which the edges are chosen, in this case, does not matter. Different MST’s

may result, but they will all have the same total cost, which will always be the

minimum cost.

Kruskal’s Algorithm for minimal spanning tree is as follows:

1. Make the tree T empty.

2. Repeat the steps 3, 4 and 5 as long as T contains less than n - 1 edges and E is

not empty otherwise, proceed to step 6.

3. Choose an edge (v, w) from E of lowest cost.

4. Delete (v, w) from E.

5. If (v, w) does not create a cycle in T

then Add (v, w) to T

else discard (v, w)

6. If T contains fewer than n - 1 edges then print no spanning tree.

Example 1:

Construct the minimal spanning tree for the graph shown below:

Arrange all the edges in the increasing order of their costs:

 10 20 30 40 50
Cost 15 25 35 45 55

 (1, 2) (4, 6) (1, 4) (2, 5) (2, 3)
Edge (3, 6) (2, 6) (3, 5) (1, 5) (5, 6)

1
10

45

2 50

40

30 35
3

4 25 5
55

20
6

15

Lecture Notes: M. ANANTHA LAKSMI

7 Dept. of CSE, RCEW

The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

EDGE COST
STAGES IN KRUSKAL’S

ALGORITHM
REMARKS

(1,

2)

10

1

2

3

The edge between vertices 1 and 2 is
the first edge selected. It is included in

the spanning tree.

4
5

6

(3,

6)

15

1

2

3

Next, the edge between vertices 3 and 6
is selected and included in the tree.

4
5

6

(4,

6)

20

1

2

3

The edge between vertices 4 and 6 is

next included in the tree.

4
5

6

(2,

6)

25

1

2

3

The edge between vertices 2 and 6 is

considered next and included in the

tree.

4

5

6

(1,

4)

30

Reject

The edge between the vertices 1 and 4

is discarded as its inclusion creates a

cycle.

(3,

5)

35

1

2

3

Finally, the edge between vertices 3 and

5 is considered and included in the tree

 built. This completes the tree.

4 5

The cost of the minimal spanning tree is
6 105.

Lecture Notes: M. ANANTHA LAKSMI

8 Dept. of CSE, RCEW

Example 2:

Construct the minimal spanning tree for the graph shown below:

Solution:

Arrange all the edges in the increasing order of their costs:

Cost 10 12 14 16 18 22 24 25 28

Edge (1, 6) (3, 4) (2, 7) (2, 3) (4, 7) (4, 5) (5, 7) (5, 6) (1, 2)

The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

EDGE COST
STAGES IN KRUSKAL’S

ALGORITHM
REMARKS

(1,

6)

10

1

6

5

7

2

4

3

The edge between vertices 1 and 6 is

the first edge selected. It is included in

the spanning tree.

(3,

4)

12

1

6

5

7

2

4

3

Next, the edge between vertices 3 and 4

is selected and included in the tree.

(2,

7)

14

6

1

5

7

2

4

3

The edge between vertices 2 and 7 is

next included in the tree.

1 28

10
2

14

6 16

7
24

25
3

5 18

12

22 4

Lecture Notes: M. ANANTHA LAKSMI

9 Dept. of CSE, RCEW

(2,

3)

16

6

1

2

3

The edge between vertices 2 and 3 is

 next included in the tree.

7

5

4

(4,

7)

18

Reject

The edge between the vertices 4 and 7

is discarded as its inclusion creates a

cycle.

(4,

5)

22

6

1

2

3

The edge between vertices 4 and 7 is

 considered next and included in the

7

tree.

5

4

(5,

7)

24

Reject

The edge between the vertices 5 and 7

is discarded as its inclusion creates a

cycle.

(5,

6)

25

6

1

2

3

Finally, the edge between vertices 5 and

 6 is considered and included in the tree

7

built. This completes the tree.

The cost of the minimal spanning tree is

5 99.

4

6.3.2. MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM

A given graph can have many spanning trees. From these many spanning trees, we

have to select a cheapest one. This tree is called as minimal cost spanning tree.

Minimal cost spanning tree is a connected undirected graph G in which each edge is

labeled with a number (edge labels may signify lengths, weights other than costs).

Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as

small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm for

finding an MST. In the spanning tree algorithm, any vertex not in the tree but

connected to it by an edge can be added. To find a Minimal cost spanning tree, we

must be selective - we must always add a new vertex for which the cost of the new

edge is as small as possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding an

Minimal cost spanning tree. Prim's algorithm is an example of a greedy algorithm.

Lecture Notes: M. ANANTHA LAKSMI

10 Dept. of CSE, RCEW

Prim’s Algorithm:

E is the set of edges in G. cost [1:n, 1:n] is the cost adjacency matrix of an n vertex

graph such that cost [i, j] is either a positive real number or  if no edge (i, j) exists. A

minimum spanning tree is computed and stored as a set of edges in the array t [1:n-1,

1:2]. (t [i, 1], t [i, 2]) is an edge in the minimum-cost spanning tree. The final cost is

returned.

Algorithm Prim (E, cost, n, t)

{

Let (k, l) be an edge of minimum cost in E;

mincost := cost [k, l];
t [1, 1] := k; t [1, 2] := l;

for i :=1 to n do // Initialize near

if (cost [i, l] < cost [i, k]) then near [i] := l;

else near [i] := k;

near [k] :=near [l] := 0;
for i:=2 to n - 1 do // Find n - 2 additional edges for t.

{
Let j be an index such that near [j] 0 and

cost [j, near [j]] is minimum;

t [i, 1] := j; t [i, 2] := near [j];

mincost := mincost + cost [j, near [j]];

near [j] := 0

for k:= 1 to n do // Update near[].

if ((near [k] 0) and (cost [k, near [k]] > cost [k, j]))

then near [k] := j;

}
return mincost;

}

EXAMPLE:

Use Prim’s Algorithm to find a minimal spanning tree for the graph shown below

starting with the vertex A.

Solution:
฀0 3 6
฀
฀3 0 2

฀฀


   ฀

฀
4   ฀

฀฀
4 ฀
฀
฀

1 ฀
฀฀
฀

B
4

D

3 2 1 2
4

E

A

4

C 2

1

G
6

2 F 1

1

0

฀6
฀ 2 0 1 4 2

The cost adjacency matrix is ฀ 4 1 0 2 
฀
฀  4 2 0 2

฀  2  2 0

฀   4 1 1

Lecture Notes: M. ANANTHA LAKSMI

11 Dept. of CSE, RCEW

B
3

0 6





B
44

3



0 2


B 3 1

0 2

C

2

2

1

1

B 3

4

0 2

C 2



The stepwise progress of the prim’s algorithm is as follows:

Step 1:

D

E

A G
F

C

Step 2:

D

E

A G
F

C

Step 3:

D

E

A G

F

Step 4:

A

Step 5:

D

A E G

F

 Vertex A B C D E F

Status 0 1 1 1 1 1
Dist. 0 3 6   
Next * A A A A A

G

1

A

Vertex A B C D E F

Status 0 0 1 1 1 1
Dist. 0 3 2 4  
Next * A B B A A

G

1

A

1 D

0 2
2 E

C
2 F

Vertex A B C D E F G

Status 0 0 0 1 1 1 1
Dist. 0 3 2 1 4 2 
Next * A B C C C A

 Vertex A B C D E F G

Status 0 0 0 0 1 1 1
Dist. 0 3 2 1 2 2 4

4 G Next * A B C D C D

Vertex A B C D E F G

Status 0 0 0 0 1 0 1
Dist. 0 3 2 1 2 2 1

Next * A B C D C E

Lecture Notes: M. ANANTHA LAKSMI

12 Dept. of CSE, RCEW

B 3 1 D

0 2

C

2 1

E

1 F

B 3 1 D

2 E

0 2

C

1

1 F

Step 6:

A G

Step 7:

A G

6.4. Reachability Matrix (Warshall’s Algorithm):

Warshall’s algorithm requires knowing which edges exist and which does not. It doesn’t
need to know the lengths of the edges in the given directed graph. This information is

conveniently displayed by adjacency matrix for the graph, in which a ‘1’ indicates the

existence of an edge and ‘0’ indicates non-existence.

It begins with the adjacency matrix for the given graph, which is called A0, and then

updates the matrix ‘n’ times, producing matrices called A1, A2, , An and then

stops.

In warshall’s algorithm the matrix Ai contains information about the existence of i–
paths. A one entry in the matrix Ai will correspond to the existence of i–paths and

zero entry will correspond to non-existence. Thus when the algorithm stops, the final
matrix An, contains the desired connectivity information.

A one entry indicates a pair of vertices, which are connected and zero entry indicates a

pair, which are not. This matrix is called a reachability matrix or path matrix for the

graph. It is also called the transitive closure of the original adjacency matrix.

The update rule for computing Ai from Ai-1 in warshall’s algorithm is:

Ai [x, y] = Ai-1 [x, y] ۷ (Ai-1 [x, i] ٨ Ai-1 [i, y]) ---- (1)

A l l P a irs Rec h a b i l it y

Mat r ix

Ad jac e nc y M at r ix

W a rs h a ll’s A lg orit h m

Vertex A B C D E F G

Status 0 0 0 0 0 1 0
Dist. 0 3 2 1 2 1 1

Next * A B C D G E

Vertex A B C D E F G

Status 0 0 0 0 0 0 0
Dist. 0 3 2 1 2 1 1

Next * A B C D G E

Lecture Notes: M. ANANTHA LAKSMI

13 Dept. of CSE, RCEW

4

฀
0

4

฀
0

Example 1:

Use warshall’s algorithm to calculate the reachability matrix for the graph:

4

1 4

5 6

7 11

1

2 3

7

We begin with the adjacency matrix of the graph ‘A0’

1 ฀0 1
฀

A 
2 ฀0 0

0
3 ฀0 0
฀
฀1 1

1 0฀
฀

1 1฀
0 0฀

฀฀
1 ฀



The first step is to compute ‘A1’ matrix. To do so we will use the updating rule – (1).

Before doing so, we notice that only one entry in A0 must remain one in A1, since in

Boolean algebra 1 + (anything) = 1. Since these are only nine zero entries in A0, there

are only nine entries in A0 that need to be updated.

A1[1, 1] = A0[1, 1] ۷ (A0[1, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[1, 4] = A0[1, 4] ۷ (A0[1, 1] ٨ A0[1, 4]) = 0 ۷ (0 ٨ 0) = 0

A1[2, 1] = A0[2, 1] ۷ (A0[2, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[2, 2] = A0[2, 2] ۷ (A0[2, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 1] = A0[3, 1] ۷ (A0[3, 1] ٨ A0[1, 1]) = 0 ۷ (0 ٨ 0) = 0

A1[3, 2] = A0[3, 2] ۷ (A0[3, 1] ٨ A0[1, 2]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 3] = A0[3, 3] ۷ (A0[3, 1] ٨ A0[1, 3]) = 0 ۷ (0 ٨ 1) = 0

A1[3, 4] = A0[3, 4] ۷ (A0[3, 1] ٨ A0[1, 4]) = 0 ۷ (0 ٨ 0) = 0

A1[4, 4] = A0[4, 4] ۷ (A0[4, 1] ٨ A0[1, 4]) = 0 ۷ (1 ٨ 0) = 0

1 ฀0
฀

A 
2 ฀0

1
3 ฀0
฀
฀1

1 1 0฀
฀

0 1 1฀
0 0 0฀

฀฀
1 1 ฀




Next, A2 must be calculated from A1; but again we need to update the 0 entries,

A2[1, 1] = A1[1, 1] ۷ (A1[1, 2] ٨ A1[2, 1]) = 0 ۷ (1 ٨ 0) = 0

A2[1, 4] = A1[1, 4] ۷ (A1[1, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1

A2[2, 1] = A1[2, 1] ۷ (A1[2, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0

A2[2, 2] = A1[2, 2] ۷ (A1[2, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0

A2[3, 1] = A1[3, 1] ۷ (A1[3, 2] ٨ A1[2, 1]) = 0 ۷ (0 ٨ 0) = 0

A2[3, 2] = A1[3, 2] ۷ (A1[3, 2] ٨ A1[2, 2]) = 0 ۷ (0 ٨ 0) = 0

Lecture Notes: M. ANANTHA LAKSMI

14 Dept. of CSE, RCEW

4

฀
1

4

฀
1

4

฀
1

฀

฀

A2[3, 3] = A1[3, 3] ۷ (A1[3, 2] ٨ A1[2, 3]) = 0 ۷ (0 ٨ 1) = 0

A2[3, 4] = A1[3, 4] ۷ (A1[3, 2] ٨ A1[2, 4]) = 0 ۷ (0 ٨ 1) = 0

A2[4, 4] = A1[4, 4] ۷ (A1[4, 2] ٨ A1[2, 4]) = 0 ۷ (1 ٨ 1) = 1

1 ฀0 1 1 1 ฀
฀ ฀

A 
2 ฀0 0 1 1฀2
3 ฀0 0 0 0 ฀
฀ ฀
฀1 1 1 ฀



This matrix has only seven 0 entries, and so to compute A3, we need to do only seven

computations.

A3[1, 1] = A2[1, 1] ۷ (A2[1, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0

A3[2, 1] = A2[2, 1] ۷ (A2[2, 3] ٨ A2[3, 1]) = 0 ۷ (1 ٨ 0) = 0

A3[2, 2] = A2[2, 2] ۷ (A2[2, 3] ٨ A2[3, 2]) = 0 ۷ (1 ٨ 0) = 0

A3[3, 1] = A2[3, 1] ۷ (A2[3, 3] ٨ A2[3, 1]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 2] = A2[3, 2] ۷ (A2[3, 3] ٨ A2[3, 2]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 3] = A2[3, 3] ۷ (A2[3, 3] ٨ A2[3, 3]) = 0 ۷ (0 ٨ 0) = 0

A3[3, 4] = A2[3, 4] ۷ (A2[3, 3] ٨ A2[3, 4]) = 0 ۷ (0 ٨ 0) = 0

1 ฀0 1 1 1฀
฀ ฀

A 
2 ฀0 0 1 1 ฀3
3 ฀0 0 0 0 ฀
฀ ฀
฀1 1 1 ฀



Once A3 is calculated, we use the update rule to calculate A4 and stop. This matrix is

the reachability matrix for the graph.

A4[1, 1] = A3 [1, 1] ۷ (A3 [1, 4] ٨ A3 [4, 1]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[2, 1] = A3 [2, 1] ۷ (A3 [2, 4] ٨ A3 [4, 1]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[2, 2] = A3 [2, 2] ۷ (A3 [2, 4] ٨ A3 [4, 2]) = 0 ۷ (1 ٨ 1) = 0 ۷ 1 = 1

A4[3, 1] = A3 [3, 1] ۷ (A3 [3, 4] ٨ A3 [4, 1]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 2] = A3 [3, 2] ۷ (A3 [3, 4] ٨ A3 [4, 2]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 3] = A3 [3, 3] ۷ (A3 [3, 4] ٨ A3 [4, 3]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

A4[3, 4] = A3 [3, 4] ۷ (A3 [3, 4] ٨ A3 [4, 4]) = 0 ۷ (0 ٨ 1) = 0 ۷ 0 = 0

1 ฀1 1 1 1฀
฀ ฀

A 
2 ฀1 1 1 1฀4
3 ฀0 0 0 0 ฀
฀ ฀
฀1 1 1 ฀




Note that according to the algorithm vertex 3 is not reachable from itself 1. This is

because as can be seen in the graph, there is no path from vertex 3 back to itself.

Lecture Notes: M. ANANTHA LAKSMI

15 Dept. of CSE, RCEW

6.5. Traversing a Graph

Many graph algorithms require one to systematically examine the nodes and edges of a

graph G. There are two standard ways to do this. They are:

 Breadth first traversal (BFT)

 Depth first traversal (DFT)

The BFT will use a queue as an auxiliary structure to hold nodes for future processing

and the DFT will use a STACK.

During the execution of these algorithms, each node N of G will be in one of three

states, called the status of N, as follows:

1. STATUS = 1 (Ready state): The initial state of the node N.

2. STATUS = 2 (Waiting state): The node N is on the QUEUE or STACK, waiting to

be processed.

3. STATUS = 3 (Processed state): The node N has been processed.

Both BFS and DFS impose a tree (the BFS/DFS tree) on the structure of graph. So, we

can compute a spanning tree in a graph. The computed spanning tree is not a

minimum spanning tree. The spanning trees obtained using depth first search are

called depth first spanning trees. The spanning trees obtained using breadth first

search are called Breadth first spanning trees.

6.5.1. Breadth first search and traversal:

The general idea behind a breadth first traversal beginning at a starting node A is as

follows. First we examine the starting node A. Then we examine all the neighbors of A.

Then we examine all the neighbors of neighbors of A. And so on. We need to keep track

of the neighbors of a node, and we need to guarantee that no node is processed more

than once. This is accomplished by using a QUEUE to hold nodes that are waiting to be

processed, and by using a field STATUS that tells us the current status of any node.

The spanning trees obtained using BFS are called Breadth first spanning trees.

Breadth first traversal algorithm on graph G is as follows:

This algorithm executes a BFT on graph G beginning at a starting node A.

Initialize all nodes to the ready state (STATUS = 1).

1. Put the starting node A in QUEUE and change its status to the waiting

state (STATUS = 2).

2. Repeat the following steps until QUEUE is empty:

a. Remove the front node N of QUEUE. Process N and change the

status of N to the processed state (STATUS = 3).

b. Add to the rear of QUEUE all the neighbors of N that are in the

ready state (STATUS = 1), and change their status to the waiting

state (STATUS = 2).

3. Exit.

Lecture Notes: M. ANANTHA LAKSMI

16 Dept. of CSE, RCEW

6.5.2. Depth first search and traversal:

Depth first search of undirected graph proceeds as follows: First we examine the

starting node V. Next an unvisited vertex 'W' adjacent to 'V' is selected and a depth

first search from 'W' is initiated. When a vertex 'U' is reached such that all its adjacent

vertices have been visited, we back up to the last vertex visited, which has an unvisited

vertex 'W' adjacent to it and initiate a depth first search from W. The search terminates

when no unvisited vertex can be reached from any of the visited ones.

This algorithm is similar to the inorder traversal of binary tree. DFT algorithm is similar

to BFT except now use a STACK instead of the QUEUE. Again field STATUS is used to

tell us the current status of a node.

The algorithm for depth first traversal on a graph G is as follows.

This algorithm executes a DFT on graph G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Push the starting node A into STACK and change its status to the waiting state

(STATUS = 2).

3. Repeat the following steps until STACK is empty:

a. Pop the top node N from STACK. Process N and change the status of N to

the processed state (STATUS = 3).

b. Push all the neighbors of N that are in the ready state (STATUS = 1), and

change their status to the waiting state (STATUS = 2).
4. Exit.

Example 1:

Consider the graph shown below. Traverse the graph shown below in breadth first

order and depth first order.

A Gra p h G

Adjacency list for graph G

A

F C B

D E G

J K

Node Adjacency List

A F, C, B

B A, C, G

C A, B, D, E, F, G

D C, F, E, J

E C, D, G, J, K

F A, C, D

G B, C, E, K

J D, E, K

K E, G, J

Lecture Notes: M. ANANTHA LAKSMI

17 Dept. of CSE, RCEW

Breadth-first search and traversal:

The steps involved in breadth first traversal are as follows:

Current
Node

QUEUE

Processed Nodes
Status

A B C D E F G J K

 1 1 1 1 1 1 1 1 1

 A 2 1 1 1 1 1 1 1 1

A F C B A 3 2 2 1 1 2 1 1 1

F C B D A F 3 2 2 2 1 3 1 1 1

C B D E G A F C 3 2 3 2 2 3 2 1 1

B D E G A F C B 3 3 3 2 2 3 2 1 1

D E G J A F C B D 3 3 3 3 2 3 2 2 1

E G J K A F C B D E 3 3 3 3 3 3 2 2 2

G J K A F C B D E G 3 3 3 3 3 3 3 2 2

J K A F C B D E G J 3 3 3 3 3 3 3 3 2

K EMPTY A F C B D E G J K 3 3 3 3 3 3 3 3 3

For the above graph the breadth first traversal sequence is: A F C B D E G J K.

Depth-first search and traversal:

The steps involved in depth first traversal are as follows:

Current
Node

Stack

Processed Nodes
Status

A B C D E F G J K

 1 1 1 1 1 1 1 1 1

 A 2 1 1 1 1 1 1 1 1

A B C F A 3 2 2 1 1 2 1 1 1

F B C D A F 3 2 2 2 1 3 1 1 1

D B C E J A F D 3 2 2 3 2 3 1 2 1

J B C E K A F D J 3 2 2 3 2 3 1 3 2

K B C E G A F D J K 3 2 2 3 2 3 2 3 3

G B C E A F D J K G 3 2 2 3 2 3 3 3 3

E B C A F D J K G E 3 2 2 3 3 3 3 3 3

C B A F D J K G E C 3 2 3 3 3 3 3 3 3

B EMPTY A F D J K G E C B 3 3 3 3 3 3 3 3 3

For the above graph the depth first traversal sequence is: A F D J K G E C B.

Lecture Notes: M. ANANTHA LAKSMI

18 Dept. of CSE, RCEW

Example 2:

Traverse the graph shown below in breadth first order, depth first order and construct

the breadth first and depth first spanning trees.

If the depth first traversal is initiated from vertex A, then the vertices of graph G are

visited in the order: A F E G L J K M H I C D B. The depth first spanning tree is shown

in the figure given below:

Depth first Traversal

If the breadth first traversal is initiated from vertex A, then the vertices of graph G are

visited in the order: A F B C G E D L H J M I K. The breadth first spanning tree is

shown in the figure given below:

Breadth first traversal

A

F B C G

E D L H J

M I K

A

F B

E

G D

L H C

J I

K M

Node Adjacency List

A F, B, C, G
B A
C A, G

D E, F

E G, D, F

F A, E, D
G A, L, E, H, J, C

H G, I

I H

J G, L, K, M

K J

L G, J, M

TheMadjace ncLy, liJst for the graph G

A H I

B C G

J K

D

E

F L M

T h e G r a p h G

Lecture Notes: M. ANANTHA LAKSMI

19 Dept. of CSE, RCEW

2 3

Example 3:

Traverse the graph shown below in breadth first order, depth first order and construct

the breadth first and depth first spanning trees.

Graph G

He a d No d e s

1

2 1 4 5

3
1 6 7

4
2 8

5
2 8

6
3 8

7
3 8

8
4 5 6 7

A d j a c e nc y

l is t fo r

g r a p h

G

Depth first search and traversal:

If the depth first is initiated from vertex 1, then the vertices of graph G are visited in

the order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree is as follows:

Depth First Spanning Tree

1

2 3

4 5 6 7

8

1

2 3

4 5 6 7

8

Lecture Notes: M. ANANTHA LAKSMI

20 Dept. of CSE, RCEW

Breadth first search and traversal:

If the breadth first search is initiated from vertex 1, then the vertices of G are visited in

the order: 1, 2, 3, 4, 5, 6, 7, 8. The breadth first spanning tree is as follows:

Breadth First Spanning Tree

EXCERCISES

1. Show that the sum of degrees of all vertices in an undirected graph is twice the

number of edges.

2. Show that the number of vertices of odd degree in a finite graph is even.

3. How many edges are contained in a complete graph of “n” vertices.

4. Show that the number of spanning trees in a complete graph of “n” vertices is 2n-1

– 1.

5. Prove that the edges explored by a breadth first or depth first traversal of a

connected graph from a tree.

6. Explain how existence of a cycle in an undirected graph may be detected by

traversing the graph in a depth first manner.

7. Write a “C” function to generate the incidence matrix of a graph from its

adjacency matrix.

8. Give an example of a connected directed graph so that a depth first traversal of

that graph yields a forest and not a spanning tree of the graph.

9. Rewrite the algorithms “BFSearch” and “DFSearch” so that it works on adjacency

matrix representation of graphs.

10. Write a “C” function to find out whether there is a path between any two vertices

in a graph (i.e. to compute the transitive closure matrix of a graph)

11. Write a “C” function to delete an existing edge from a graph represented by an

adjacency list.

12. Construct a weighted graph for which the minimal spanning trees produced by

Kruskal’s algorithm and Prim’s algorithm are different.

1

2 3

4 5 6 7

8

Lecture Notes: M. ANANTHA LAKSMI

21 Dept. of CSE, RCEW

13. Describe the algorithm to find a minimum spanning tree T of a weighted graph G.

Find the minimum spanning tree T of the graph shown below.

14. For the graph given below find the following:

a) Linked representation of the graph.

b) Adjacency list.

c) Depth first spanning tree.

d) Breadth first spanning tree.

e) Minimal spanning tree using Kruskal’s and Prim’s algorithms.

15. For the graph given below find the following:

f) Linked representation of the graph.
g) Adjacency list.

h) Depth first spanning tree.

i) Breadth first spanning tree.

j) Minimal spanning tree using Kruskal’s and Prim’s algorithms.

16. For the graph given below find the following:
k) Linked representation of the graph.

l) Adjacency list.

m) Depth first spanning tree.

n) Breadth first spanning tree.

o) Minimal spanning tree using Kruskal’s and Prim’s algorithms.

5

1

6

2 4

8

3

7

1
4

2 3 7 8

5 6

8 6

1 1 5 7

2 4 6 2 7 9

3 3 8 10

4 10 9 5

6 5

A B C

1 8

4 2

D E

3

Lecture Notes: M. ANANTHA LAKSMI

22 Dept. of CSE, RCEW

Multiple Choice Questions

1. How can the graphs be represented? [D]
A. Adjacency matrix

B. Adjacency list

C. Incidence matrix

D. All of the above

2. The depth-first traversal in graph is analogous to tree traversal: [C]
A. In-order

B. Post-order

C. Pre-order

D. Level order

3. The children of a same parent node are called as: [C]
A. adjacent node

B. non-leaf node

C. Sibblings

D. leaf node

4. Complete graphs with n nodes will have edges. [C]
A. n - 1

B. n/2

C. n(n-1)/2

D. (n – 1)/2

5. A graph with no cycle is called as: [C]
A. Sub-graph

B. Directed graph

C. Acyclic graph

D. none of the above

6. The maximum number of nodes at any level is: [B]
A. n

B. 2n

C. n + 1

D. 2n

FIGURE 1 and its adjacency list

7. For the figure 1 shown above, the depth first spanning tree visiting

sequence is:

[B]

A. A B C D E F G

B. A B D C F G E

C. A B C D E F G

D. none of the above

8. For the figure 1 shown above, the breadth first spanning tree visiting

sequence is:

[B]

A. A B D C F G E

B. A B C D E F G

C. A B C D E F G

D. none of the above

9. Which is the correct order for Kruskal’s minimum spanning tree algorithm

to add edges to the minimum spanning tree for the figure 1 shown

above:
A. (A, B) then (A, C) then (A, D) then (D, E) then (C, F) then (D, G)

B. (A, D) then (E, G) then (B, D) then (D, E) then (F, G) then (A, C)

C. both A and B

D. none of the above

[B]

10. For the figure 1 shown above, the cost of the minimal spanning tree is: [A]
A. 57

B. 68

C. 48

D. 32

Node Adjacency List

A B C D

B A D E

C A D F

D A B C E F G

E B D G

F C D G

G F D E

20
A B

23 1
4 15

9
C

36
D E

25 16
28

3

F G
17

Lecture Notes: M. ANANTHA LAKSMI

23 Dept. of CSE, RCEW

11. A simple graph has no loops. What other property must a simple graph

have?

[D]

A. It must be directed.

B. It must be undirected.

C. It must have at least one vertex.

D. It must have no multiple edges.

12. Suppose you have a directed graph representing all the flights that an

airline flies. What algorithm might be used to find the best sequence of

connections from one city to another?

[D]

A. Breadth first search.

B. Depth first search.

C. A cycle-finding algorithm.

D. A shortest-path algorithm.

13. If G is an directed graph with 20 vertices, how many boolean values will

be needed to represent G using an adjacency matrix?

[D]

A. 20

B. 40

C. 200

D. 400

14. Which graph representation allows the most efficient determination of

the existence of a particular edge in a graph?

[B]

A. An adjacency matrix.

B. Edge lists.

C. Incidence matrix

D. none of the above

15. What graph traversal algorithm uses a queue to keep track of vertices

which need to be processed?

[A]

A. Breadth-first search.

B. Depth-first search.

C Level order search

D. none of the above

16. What graph traversal algorithm uses a stack to keep track of vertices

which need to be processed?

[B]

A. Breadth-first search.

B. Depth-first search.

C Level order search

D. none of the above

17. What is the expected number of operations needed to loop through all

the edges terminating at a particular vertex given an adjacency matrix

representation of the graph? (Assume n vertices are in the graph and m

edges terminate at the desired node.)

[D]

A. O(m)

B. O(n)

C. O(m²)

D. O(n²)

18. What is the expected number of operations needed to loop through all

the edges terminating at a particular vertex given an adjacency list

representation of the graph? (Assume n vertices are in the graph and m

edges terminate at the desired node.)

[A]

19.

A. O(m)

B. O(n)

C. O(m²)

D. O(n²)

[B]

FIGURE 3

For the figure 3, starting at vertex A, which is a correct order for Prim’s

minimum spanning tree algorithm to add edges to the minimum

spanning tree?

3
A D

2 1 5 5

B 3 G 4 E

1 4 6 1

C
3

F

Lecture Notes: M. ANANTHA LAKSMI

24 Dept. of CSE, RCEW

A. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D)
B. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E)

C. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E)

D. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F)

20. For the figure 3, which is a correct order for Kruskal’s minimum spanning

tree algorithm to add edges to the minimum spanning tree?
A. (A, G) then (G, C) then (C, B) then (C, F) then (F, E) then (E, D)

B. (A, G) then (A, B) then (B, C) then (A, D) then (C, F) then (F, E)
C. (A, G) then (B, C) then (E, F) then (A, B) then (C, F) then (D, E)

D. (A, G) then (A, B) then (A, C) then (A, D) then (A, D) then (C, F)

[C]

21. Which algorithm does not construct an in-tree as part of its processing? []

A. Dijkstra’s Shortest Path Algorithm

B. Prim’s Minimum Spanning Tree Algorithm

C. Kruskal’s Minimum Spanning Tree Algorithm

D. The Depth-First Search Trace Algorithm

22. The worst-case running time of Kruskal’s minimum-cost spanning tree []

algorithm on a graph with n vertices and m edges is:
A. C.

B. D.

23. An adjacency matrix representation of a graph cannot contain

information of:

[D]

A. Nodes

B. Edges

C. Direction of edges

D. Parallel edges

FIGURE 4 and its adjacency list

24. For the figure 4, which edge does not occur in the depth first spanning

tree resulting from depth first search starting at node B:

[B]

A. F E

B. E C

C. C G

D. C F

25. The set of all edges generated by DFS tree starting at node B is: [A]
A. B A D C G F E

B. A D

C. B A C D G F E

D. Cannot be generated

26. The set of all edges generated by BFS tree starting at node B is: [C]
A. B A D C G F E

B. A D

C. B A C D G F E

D. Cannot be generated

Node Adjacency List

A D

B A C

C G D F

D ----

E C D

F E A

G B

A

B D

G F

C E

	5.1. TREES:
	5.2. BINARY TREE:
	Tree Terminology: Leaf node
	Path
	Siblings
	Ancestor and Descendent
	Subtree
	Level
	Height
	Depth
	Assigning level numbers and Numbering of nodes for a binary tree:
	Properties of binary trees:
	Strictly Binary tree:
	Full Binary tree:
	Complete Binary tree:
	Internal and external nodes:
	Data Structures for Binary Trees:
	Array-based Implementation:
	Linked Representation (Pointer based):
	5.3. Binary Tree Traversal Techniques:
	5.3.1. Recursive Traversal Algorithms: Inorder Traversal:
	Preorder Traversal:
	Postorder Traversal:
	Level order Traversal:
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	5.3.2. Building Binary Tree from Traversal Pairs:
	Example 1:
	Solution:
	Example 2:
	Solution:
	Example 3:
	Solution:
	Example 4:
	Solution:
	5.3.3. Binary Tree Creation and Traversal Using Arrays:
	5.3.4. Binary Tree Creation and Traversal Using Pointers:
	5.3.5. Non Recursive Traversal Algorithms:
	Inorder Traversal:
	Preorder Traversal:
	Postorder Traversal:
	Example 1:
	Inorder Traversal:
	Postorder Traversal:
	Preorder Traversal:
	Example 2:
	Inorder Traversal:
	Postorder Traversal:
	Preorder Traversal:
	5.4. Expression Trees:
	Example 1:
	Solution:
	For the above tree:
	Example 2:
	Solution:
	5.4.1. Converting expressions with expression trees:
	5.5. Threaded Binary Tree:
	5.6. Binary Search Tree:
	5.7. General Trees (m-ary tree):
	Differences between trees and binary trees:
	Stage 1:
	Stage 2:
	Example 1:
	Solution:
	Example 2:
	Solution:
	Example 3:
	Solution:
	5.8. Search and Traversal Techniques for m-ary trees:
	5.8.1. Depth first search:
	Disadvantages:
	5.8.2. Breadth first search:
	5.9. Sparse Matrices:
	The program to represent sparse matrix:
	EXCERCISES
	Multiple Choice Questions
	6.1. Introduction to Graphs:
	6.2. Representation of Graphs:
	Adjacency matrix:
	Adjacency List:
	Incidence Matrix:
	6.3. Minimum Spanning Tree (MST):
	Example:
	6.3.1. Kruskal’s Algorithm
	Example 1:
	Example 2:
	Solution:
	6.3.2. MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM
	Prim’s Algorithm:
	Algorithm Prim (E, cost, n, t)
	EXAMPLE:
	Solution:
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:
	Step 7:
	Example 1:
	6.5. Traversing a Graph
	6.5.1. Breadth first search and traversal:
	6.5.2. Depth first search and traversal:
	Example 1:
	Breadth-first search and traversal:
	Depth-first search and traversal:
	Example 2:
	Example 3:
	Depth first search and traversal:
	Breadth first search and traversal:
	EXCERCISES
	Multiple Choice Questions

