
Lecture Notes: M. ANANTHA LAKSMI 1 Dept. of CSE, RCEW

UNIT - 1

Part - 1

Basic Concepts

The term data structure is used to describe the way data is stored, and the term
algorithm is used to describe the way data is processed. Data structures and
algorithms are interrelated. Choosing a data structure affects the kind of algorithm
you might use, and choosing an algorithm affects the data structures we use.

An Algorithm is a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time. No
matter what the input values may be, an algorithm terminates after executing a
finite number of instructions.

1.1. Introduction to Data Structures:

Data structure is a representation of logical relationship existing between individual elements of
data. In other words, a data structure defines a way of organizing all data items that considers
not only the elements stored but also their relationship to each other. The term data structure
is used to describe the way data is stored.

To develop a program of an algorithm we should select an appropriate data structure for that
algorithm. Therefore, data structure is represented as:

Algorithm + Data structure = Program

A data structure is said to be linear if its elements form a sequence or a linear list. The linear
data structures like an array, stacks, queues and linked lists organize data in linear order. A
data structure is said to be non linear if its elements form a hierarchical classification where,
data items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and graph structures
represents hierarchial relationship between individual data elements. Graphs are nothing but
trees with certain restrictions removed.

Data structures are divided into two types:

 Primitive data structures.

 Non-primitive data structures.

Primitive Data Structures are the basic data structures that directly operate upon the
machine instructions. They have different representations on different computers. Integers,
floating point numbers, character constants, string constants and pointers come under this
category.

Non-primitive data structures are more complicated data structures and are derived from
primitive data structures. They emphasize on grouping same or different data items with
relationship between each data item. Arrays, lists and files come under this category. Figure
1.1 shows the classification of data structures.

Lecture Notes: M. ANANTHA LAKSMI 2 Dept. of CSE, RCEW

1 2 3

(a) Contiguous (b) non-contiguous

Fig ure 1. 1. C lass if icat io n of Da t a St ruct ures

1.2. Data structures: Organization of data

The collection of data you work with in a program have some kind of structure or organization.
No matte how complex your data structures are they can be broken down into two fundamental
types:

 Contiguous

 Non-Contiguous.

In contiguous structures, terms of data are kept together in memory (either RAM or in a file).
An array is an example of a contiguous structure. Since each element in the array is located
next to one or two other elements. In contrast, items in a non-contiguous structure and
scattered in memory, but we linked to each other in some way. A linked list is an example of a
non-contiguous data structure. Here, the nodes of the list are linked together using pointers
stored in each node. Figure 1.2 below illustrates the difference between contiguous and non-
contiguous structures.

1 2 3

Figure 1.2 Contiguous and Non-contiguous structures compared

Contiguous structures:

Contiguous structures can be broken drawn further into two kinds: those that contain data
items of all the same size, and those where the size may differ. Figure 1.2 shows example of
each kind. The first kind is called the array. Figure 1.3(a) shows an example of an array of
numbers. In an array, each element is of the same type, and thus has the same size.

The second kind of contiguous structure is called structure, figure 1.3(b) shows a simple
structure consisting of a person’s name and age. In a struct, elements may be of different data
types and thus may have different sizes.

Int e g er Flo at Ch ar Point ers Array s F i le s

St ac ks Q u eu es Gra p h s T rees

Da t a St ruc t ure s

Pri mit iv e Da t a St ruc t ure s No n- Pri mit iv e Da t a St ruc t ure s

L ist s

Line ar List s No n- Line ar List s

Lecture Notes: M. ANANTHA LAKSMI 3 Dept. of CSE, RCEW

21

“bill the student”

int arr[3] = {1, 2, 3}; struct cust_data
{

int age;
char name[20];

};

cust_data bill= {21, “bill the student”};

(a) Array

(b) struct

For example, a person’s age can be represented with a simple integer that occupies two bytes
of memory. But his or her name, represented as a string of characters, may require many
bytes and may even be of varying length.

Couples with the atomic types (that is, the single data-item built-in types such as integer, float
and pointers), arrays and structs provide all the “mortar” you need to built more exotic form of
data structure, including the non-contiguous forms.

1 2 3

Figure 1.3 Examples of contiguous structures.

Non-contiguous structures:

Non-contiguous structures are implemented as a collection of data-items, called nodes, where
each node can point to one or more other nodes in the collection. The simplest kind of non-
contiguous structure is linked list.

A linked list represents a linear, one-dimension type of non-contiguous structure, where there
is only the notation of backwards and forwards. A tree such as shown in figure 1.4(b) is an
example of a two-dimensional non-contiguous structure. Here, there is the notion of up and
down and left and right.

In a tree each node has only one link that leads into the node and links can only go down the
tree. The most general type of non-contiguous structure, called a graph has no such
restrictions. Figure 1.4(c) is an example of a graph.

Figure 1.4. Examples of non-contiguous structures

A B C A

(a) Linked List
B C

A
D

E G

B C

(b) Tree F (c) graph

D E F G

Lecture Notes: M. ANANTHA LAKSMI 4 Dept. of CSE, RCEW

A B C (a) Conceptual Structure

Hybrid structures:

If two basic types of structures are mixed then it is a hybrid form. Then one part contiguous
and another part non-contiguous. For example, figure 1.5 shows how to implement a double–
linked list using three parallel arrays, possibly stored a past from each other in memory.

D

P

N

1 A 3 4

2 B 4 0

(b) Hybrid Implementation

3 C 0 1

List Head
4 D 1 2

Figure 1.5. A double linked list via a hybrid data structure

The array D contains the data for the list, whereas the array P and N hold the previous and
next “pointers’’. The pointers are actually nothing more than indexes into the D array. For
instance, D[i] holds the data for node i and p[i] holds the index to the node previous to i,
where may or may not reside at position i–1. Like wise, N[i] holds the index to the next node in
the list.

1.3. Abstract Data Type (ADT):

The design of a data structure involves more than just its organization. You also need to plan
for the way the data will be accessed and processed – that is, how the data will be interpreted
actually, non-contiguous structures – including lists, tree and graphs – can be implemented
either contiguously or non- contiguously like wise, the structures that are normally treated as
contiguously - arrays and structures – can also be implemented non-contiguously.

The notion of a data structure in the abstract needs to be treated differently from what ever is
used to implement the structure. The abstract notion of a data structure is defined in terms of
the operations we plan to perform on the data.

Considering both the organization of data and the expected operations on the data, leads to the
notion of an abstract data type. An abstract data type in a theoretical construct that consists of
data as well as the operations to be performed on the data while hiding implementation.

For example, a stack is a typical abstract data type. Items stored in a stack can only be added
and removed in certain order – the last item added is the first item removed. We call these
operations, pushing and popping. In this definition, we haven’t specified have items are stored
on the stack, or how the items are pushed and popped. We have only specified the valid
operations that can be performed.

For example, if we want to read a file, we wrote the code to read the physical file device. That
is, we may have to write the same code over and over again. So we created what is known

Lecture Notes: M. ANANTHA LAKSMI 5 Dept. of CSE, RCEW

today as an ADT. We wrote the code to read a file and placed it in a library for a programmer to
use.

As another example, the code to read from a keyboard is an ADT. It has a data structure,
character and set of operations that can be used to read that data structure.

To be made useful, an abstract data type (such as stack) has to be implemented and this is
where data structure comes into ply. For instance, we might choose the simple data structure
of an array to represent the stack, and then define the appropriate indexing operations to
perform pushing and popping.

1.4. Selecting a data structure to match the operation:

The most important process in designing a problem involves choosing which data structure to
use. The choice depends greatly on the type of operations you wish to perform.

Suppose we have an application that uses a sequence of objects, where one of the main
operations is delete an object from the middle of the sequence. The code for this is as follows:

void delete (int *seg, int &n, int posn)
// delete the item at position from an array of n elements.

{

if (n)

{

int i=posn;
n--;

while (i < n)

{

}
}

return;

}

seq[i] = seg[i+1];
i++;

This function shifts towards the front all elements that follow the element at position posn. This
shifting involves data movement that, for integer elements, which is too costly. However,
suppose the array stores larger objects, and lots of them. In this case, the overhead for moving
data becomes high. The problem is that, in a contiguous structure, such as an array the logical
ordering (the ordering that we wish to interpret our elements to have) is the same as the
physical ordering (the ordering that the elements actually have in memory).

If we choose non-contiguous representation, however we can separate the logical ordering from
the physical ordering and thus change one without affecting the other. For example, if we store
our collection of elements using a double–linked list (with previous and next pointers), we can
do the deletion without moving the elements, instead, we just modify the pointers in each
node. The code using double linked list is as follows:

void delete (node * beg, int posn)

//delete the item at posn from a list of elements.

{

int i = posn;
node *q = beg;
while (i && q)

{

Lecture Notes: M. ANANTHA LAKSMI 6 Dept. of CSE, RCEW

i--;

q = q next;

}

if (q)

{ /* not at end of list, so detach P by making previous and
next nodes point to each other */

node *p = q -> prev;
node *n = q -> next;
if (p)

}

return;

}

if (n)

p -> next = n;

n -> prev = P;

The process of detecting a node from a list is independent of the type of data stored in the
node, and can be accomplished with some pointer manipulation as illustrated in figure below:

Figure 1.6 Detaching a node from a list

Since very little data is moved during this process, the deletion using linked lists will often be
faster than when arrays are used.

It may seem that linked lists are superior to arrays. But is that always true? There are trade
offs. Our linked lists yield faster deletions, but they take up more space because they require
two extra pointers per element.

1.5. Algorithm

An algorithm is a finite sequence of instructions, each of which has a clear meaning and can be
performed with a finite amount of effort in a finite length of time. No matter what the input
values may be, an algorithm terminates after executing a finite number of instructions. In
addition every algorithm must satisfy the following criteria:

Input: there are zero or more quantities, which are externally supplied;

Output: at least one quantity is produced;

A X C

100 200 300
Initial List

A X A

Lecture Notes: M. ANANTHA LAKSMI 7 Dept. of CSE, RCEW

Definiteness: each instruction must be clear and unambiguous;

Finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will
terminate after a finite number of steps;

Effectiveness: every instruction must be sufficiently basic that it can in principle be carried out
by a person using only pencil and paper. It is not enough that each operation be definite, but it
must also be feasible.

In formal computer science, one distinguishes between an algorithm, and a program. A
program does not necessarily satisfy the fourth condition. One important example of such a
program for a computer is its operating system, which never terminates (except for system
crashes) but continues in a wait loop until more jobs are entered.

We represent an algorithm using pseudo language that is a combination of the constructs of a
programming language together with informal English statements.

1.6. Practical Algorithm design issues:

Choosing an efficient algorithm or data structure is just one part of the design process. Next,
will look at some design issues that are broader in scope. There are three basic design goals
that we should strive for in a program:

1. Try to save time (Time complexity).
2. Try to save space (Space complexity).

3. Try to have face.

A program that runs faster is a better program, so saving time is an obvious goal. Like wise, a
program that saves space over a competing program is considered desirable. We want to “save
face” by preventing the program from locking up or generating reams of garbled data.

1.7. Performance of a program:

The performance of a program is the amount of computer memory and time needed to run a
program. We use two approaches to determine the performance of a program. One is
analytical, and the other experimental. In performance analysis we use analytical methods,
while in performance measurement we conduct experiments.

Time Complexity:

The time needed by an algorithm expressed as a function of the size of a problem is called the
TIME COMPLEXITY of the algorithm. The time complexity of a program is the amount of
computer time it needs to run to completion.

The limiting behavior of the complexity as size increases is called the asymptotic time
complexity. It is the asymptotic complexity of an algorithm, which ultimately determines the
size of problems that can be solved by the algorithm.

Space Complexity:

The space complexity of a program is the amount of memory it needs to run to completion. The
space need by a program has the following components:

Lecture Notes: M. ANANTHA LAKSMI 8 Dept. of CSE, RCEW

Instruction space: Instruction space is the space needed to store the compiled version of the
program instructions.

Data space: Data space is the space needed to store all constant and variable values. Data
space has two components:

 Space needed by constants and simple variables in program.

 Space needed by dynamically allocated objects such as arrays and class instances.

Environment stack space: The environment stack is used to save information needed to
resume execution of partially completed functions.

Instruction Space: The amount of instructions space that is needed depends on factors such
as:

 The compiler used to complete the program into machine code.

 The compiler options in effect at the time of compilation

 The target computer.

1.8. Classification of Algorithms

If ‘n’ is the number of data items to be processed or degree of polynomial or the size of the file
to be sorted or searched or the number of nodes in a graph etc.

1 Next instructions of most programs are executed once or at most only a few times.

If all the instructions of a program have this property, we say that its running time
is a constant.

Log n When the running time of a program is logarithmic, the program gets slightly

slower as n grows. This running time commonly occurs in programs that solve a big
problem by transforming it into a smaller problem, cutting the size by some
constant fraction., When n is a million, log n is a doubled whenever n doubles, log

n increases by a constant, but log n does not double until n increases to n2.

n When the running time of a program is linear, it is generally the case that a small
amount of processing is done on each input element. This is the optimal situation
for an algorithm that must process n inputs.

n. log n This running time arises for algorithms but solve a problem by breaking it up into
smaller sub-problems, solving them independently, and then combining the
solutions. When n doubles, the running time more than doubles.

n2 When the running time of an algorithm is quadratic, it is practical for use only on
relatively small problems. Quadratic running times typically arise in algorithms that
process all pairs of data items (perhaps in a double nested loop) whenever n
doubles, the running time increases four fold.

n3 Similarly, an algorithm that process triples of data items (perhaps in a triple–
nested loop) has a cubic running time and is practical for use only on small
problems. Whenever n doubles, the running time increases eight fold.

2n Few algorithms with exponential running time are likely to be appropriate for
practical use, such algorithms arise naturally as “brute–force” solutions to
problems. Whenever n doubles, the running time squares.

Lecture Notes: M. ANANTHA LAKSMI 9 Dept. of CSE, RCEW

1.9. Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time and/or
storage space requirement of the algorithm in terms of the size ‘n’ of the input data. Mostly,
the storage space required by an algorithm is simply a multiple of the data size ‘n’. Complexity
shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the size ‘n’ of
the input data but also on the particular data. The complexity function f(n) for certain cases
are:

1. Best Case : The minimum possible value of f(n) is called the best case.

2. Average Case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any key possible input.

The field of computer science, which studies efficiency of algorithms, is known as analysis of
algorithms.

Algorithms can be evaluated by a variety of criteria. Most often we shall be interested in the
rate of growth of the time or space required to solve larger and larger instances of a problem.
We will associate with the problem an integer, called the size of the problem, which is a
measure of the quantity of input data.

1.10. Rate of Growth

Big–Oh (O), Big–Omega (), Big–Theta () and Little–Oh

1. T(n) = O(f(n)), (pronounced order of or big oh), says that the growth rate of T(n) is
less than or equal (<) that of f(n)

2. T(n) = (g(n)) (pronounced omega), says that the growth rate of T(n) is greater than
or equal to (>) that of g(n)

3. T(n) = (h(n)) (pronounced theta), says that the growth rate of T(n) equals (=) the

growth rate of h(n) [if T(n) = O(h(n)) and T(n) = (h(n)]

4. T(n) = o(p(n)) (pronounced little oh), says that the growth rate of T(n) is less than the
growth rate of p(n) [if T(n) = O(p(n)) and T(n) (p(n))].

Some Examples:

2n2 + 5n – 6 = O(2n)

2n2 + 5n – 6 = O(n3)

2n2 + 5n – 6 = O(n2)

2n2 + 5n – 6 O(n)

2n2 + 5n – 6  (2n)

2n2 + 5n – 6  (n3)

2n2 + 5n – 6 = (n2)

2n2 + 5n – 6  (n)

2n2 + 5n – 6 (2n)

2n2 + 5n – 6  (n3)

2n2 + 5n – 6 = (n2)

2n2 + 5n – 6 = (n)

2n2 + 5n – 6 = o(2n)

2n2 + 5n – 6 = o(n3)

2n2 + 5n – 6  o(n2)
2n2 + 5n – 6  o(n)

Lecture Notes: M. ANANTHA LAKSMI 10 Dept. of CSE, RCEW

1.11. Analyzing Algorithms

Suppose ‘M’ is an algorithm, and suppose ‘n’ is the size of the input data. Clearly the
complexity f(n) of M increases as n increases. It is usually the rate of increase of f(n) we want
to examine. This is usually done by comparing f(n) with some standard functions. The most
common computing times are:

O(1), O(log2 n), O(n), O(n. log2 n), O(n2), O(n3), O(2n), n! and nn

Numerical Comparison of Different Algorithms

The execution time for six of the typical functions is given below:

S.No log n n n. log n n2 n3 2n

1 0 1 1 1 1 2

2 1 2 2 4 8 4

3 2 4 8 16 64 16

4 3 8 24 64 512 256

5 4 16 64 256 4096 65536

Graph of log n, n, n log n, n2, n3, 2n, n! and nn

O(log n) does not depend on the base of the logarithm. To simplify the analysis, the convention
will not have any particular units of time. Thus we throw away leading constants. We will also
throw away low–order terms while computing a Big–Oh running time. Since Big-Oh is an upper
bound, the answer provided is a guarantee that the program will terminate within a certain
time period. The program may stop earlier than this, but never later.

Lecture Notes: M. ANANTHA LAKSMI 11 Dept. of CSE, RCEW

One way to compare the function f(n) with these standard function is to use the functional ‘O’
notation, suppose f(n) and g(n) are functions defined on the positive integers with the property
that f(n) is bounded by some multiple g(n) for almost all ‘n’. Then,

f(n) = O(g(n))

Which is read as “f(n) is of order g(n)”. For example, the order of complexity for:

 Linear search is O(n)
 Binary search is O(log n)

 Bubble sort is O(n2)

 Quick sort is O(n log n)

For example, if the first program takes 100n2 milliseconds. While the second taken 5n3

milliseconds. Then might not 5n3 program better than 100n2 program?

As the programs can be evaluated by comparing their running time functions, with constants by
proportionality neglected. So, 5n3 program be better than the 100n2 program.

5 n3/100 n2 = n/20

for inputs n < 20, the program with running time 5n3 will be faster those the one with running
time 100 n2.

Therefore, if the program is to be run mainly on inputs of small size, we would indeed prefer
the program whose running time was O(n3)

However, as ‘n’ gets large, the ratio of the running times, which is n/20, gets arbitrarily larger.

Thus, as the size of the input increases, the O(n3) program will take significantly more time
than the O(n2) program. So it is always better to prefer a program whose running time with the
lower growth rate. The low growth rate function’s such as O(n) or O(n log n) are always better.

Exercises

1. Define algorithm.

2. State the various steps in developing algorithms?

3. State the properties of algorithms.

4. Define efficiency of an algorithm?

5. State the various methods to estimate the efficiency of an algorithm.

6. Define time complexity of an algorithm?

7. Define worst case of an algorithm.

8. Define average case of an algorithm.

9. Define best case of an algorithm.

10. Mention the various spaces utilized by a program.

Lecture Notes: M. ANANTHA LAKSMI 12 Dept. of CSE, RCEW

11. Define space complexity of an algorithm.

12. State the different memory spaces occupied by an algorithm.

Multiple Choice Questions

1. is a step-by-step recipe for solving an instance of problem. [A]
A. Algorithm

C. Pseudocode

B. Complexity

D. Analysis

2. is used to describe the algorithm, in less formal language. [C]
A. Cannot be defined

C. Pseudocode

B. Natural Language

D. None

3. of an algorithm is the amount of time (or the number of steps)
needed by a program to complete its task.

[D]

A. Space Complexity

C. Divide and Conquer

B. Dynamic Programming

D. Time Complexity

4. of a program is the amount of memory used at once by the
algorithm until it completes its execution.

[C]

A. Divide and Conquer

C. Space Complexity

B. Time Complexity

D. Dynamic Programming

5. is used to define the worst-case running time of an algorithm. [A]

A. Big-Oh notation

C. Complexity

B. Cannot be defined

D. Analysis

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 1

UNIT - 1

Part - 2

LINKED LISTS

In this chapter, the list data structure is presented. This structure can be used
as the basis for the implementation of other data structures (stacks, queues
etc.). The basic linked list can be used without modification in many programs.
However, some applications require enhancements to the linked list design.
These enhancements fall into three broad categories and yield variations on
linked lists that can be used in any combination: circular linked lists, double
linked lists and lists with header nodes.

Linked lists and arrays are similar since they both store collections of data. Array is the
most common data structure used to store collections of elements. Arrays are
convenient to declare and provide the easy syntax to access any element by its index
number. Once the array is set up, access to any element is convenient and fast. The
disadvantages of arrays are:

 The size of the array is fixed. Most often this size is specified at compile
time. This makes the programmers to allocate arrays, which seems "large
enough" than required.

 Inserting new elements at the front is potentially expensive because existing

elements need to be shifted over to make room.

 Deleting an element from an array is not possible.

Linked lists have their own strengths and weaknesses, but they happen to be strong
where arrays are weak. Generally array's allocates the memory for all its elements in
one block whereas linked lists use an entirely different strategy. Linked lists allocate
memory for each element separately and only when necessary.

Here is a quick review of the terminology and rules of pointers. The linked list code will
depend on the following functions:

malloc() is a system function which allocates a block of memory in the "heap" and
returns a pointer to the new block. The prototype of malloc() and other heap functions
are in stdlib.h. malloc() returns NULL if it cannot fulfill the request. It is defined by:

void *malloc (number_of_bytes)

Since a void * is returned the C standard states that this pointer can be converted to
any type. For example,

char *cp;

cp = (char *) malloc (100);

Attempts to get 100 bytes and assigns the starting address to cp. We can also use the
sizeof() function to specify the number of bytes. For example,

int *ip;

ip = (int *) malloc (100*sizeof(int));

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 2

free() is the opposite of malloc(), which de-allocates memory. The argument to free()
is a pointer to a block of memory in the heap — a pointer which was obtained by a
malloc() function. The syntax is:

free (ptr);

The advantage of free() is simply memory management when we no longer need a
block.

3.1. Linked List Concepts:

A linked list is a non-sequential collection of data items. It is a dynamic data structure.
For every data item in a linked list, there is an associated pointer that would give the
memory location of the next data item in the linked list.

The data items in the linked list are not in consecutive memory locations. They may be
anywhere, but the accessing of these data items is easier as each data item contains
the address of the next data item.

Advantages of linked lists:

Linked lists have many advantages. Some of the very important advantages are:

1. Linked lists are dynamic data structures. i.e., they can grow or shrink during
the execution of a program.

2. Linked lists have efficient memory utilization. Here, memory is not pre-
allocated. Memory is allocated whenever it is required and it is de-allocated
(removed) when it is no longer needed.

3. Insertion and Deletions are easier and efficient. Linked lists provide flexibility
in inserting a data item at a specified position and deletion of the data item
from the given position.

4. Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists:

1. It consumes more space because every node requires a additional pointer to
store address of the next node.

2. Searching a particular element in list is difficult and also time consuming.

3.2. Types of Linked Lists:

Basically we can put linked lists into the following four items:

1. Single Linked List.

2. Double Linked List.

3. Circular Linked List.

4. Circular Double Linked List.

A single linked list is one in which all nodes are linked together in some sequential
manner. Hence, it is also called as linear linked list.

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 3

A double linked list is one in which all nodes are linked together by multiple links which
helps in accessing both the successor node (next node) and predecessor node
(previous node) from any arbitrary node within the list. Therefore each node in a
double linked list has two link fields (pointers) to point to the left node (previous) and
the right node (next). This helps to traverse in forward direction and backward
direction.

A circular linked list is one, which has no beginning and no end. A single linked list can
be made a circular linked list by simply storing address of the very first node in the link
field of the last node.

A circular double linked list is one, which has both the successor pointer and
predecessor pointer in the circular manner.

Comparison between array and linked list:

ARRAY LINKED LIST

Size of an array is fixed Size of a list is not fixed

Memory is allocated from stack Memory is allocated from heap

It is necessary to specify the number of
elements during declaration (i.e., during
compile time).

It is not necessary to specify the
number of elements during declaration
(i.e., memory is allocated during run
time).

It occupies less memory than a linked
list for the same number of elements.

It occupies more memory.

Inserting new elements at the front is
potentially expensive because existing
elements need to be shifted over to
make room.

Inserting a new element at any position
can be carried out easily.

Deleting an element from an array is
not possible.

Deleting an element is possible.

Trade offs between linked lists and arrays:

FEATURE ARRAYS LINKED LISTS

Sequential access efficient efficient

Random access efficient inefficient

Resigning inefficient efficient

Element rearranging inefficient efficient

Overhead per elements none 1 or 2 links

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 4

Applications of linked list:

1. Linked lists are used to represent and manipulate polynomial. Polynomials are
expression containing terms with non zero coefficient and exponents. For
example:

P(x) = a0 X
n + a1 X

n-1 + …… + an-1 X + an

2. Represent very large numbers and operations of the large number such as
addition, multiplication and division.

3. Linked lists are to implement stack, queue, trees and graphs.

4. Implement the symbol table in compiler construction

3.3. Single Linked List:

A linked list allocates space for each element separately in its own block of memory
called a "node". The list gets an overall structure by using pointers to connect all its
nodes together like the links in a chain. Each node contains two fields; a "data" field to
store whatever element, and a "next" field which is a pointer used to link to the next
node. Each node is allocated in the heap using malloc(), so the node memory
continues to exist until it is explicitly de-allocated using free(). The front of the list is a
pointer to the “start” node.

A single linked list is shown in figure 3.2.1.

Figure 3.2.1. Single Linked List

The beginning of the linked list is stored in a "start" pointer which points to the first
node. The first node contains a pointer to the second node. The second node contains a
pointer to the third node, ... and so on. The last node in the list has its next field set to
NULL to mark the end of the list. Code can access any node in the list by starting at the
start and following the next pointers.

The start pointer is an ordinary local pointer variable, so it is drawn separately on the
left top to show that it is in the stack. The list nodes are drawn on the right to show
that they are allocated in the heap.

STACK HEAP

100

start

The start

pointer holds
the address
of the first
node of the
list.

100 200 300 400

Each node stores
the data.

Stores the next
node address. The next field of the

last node is NULL.

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 5

Implementation of Single Linked List:

Before writing the code to build the above list, we need to create a start node, used to
create and access other nodes in the linked list. The following structure definition will
do (see figure 3.2.2):

 Creating a structure with one data item and a next pointer, which will be
pointing to next node of the list. This is called as self-referential structure.

 Initialise the start pointer to be NULL.

Figure 3.2.2. Structure definition, single link node and empty list

The basic operations in a single linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

Creating a node for Single Linked List:

Creating a singly linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by
using the malloc() function. The function getnode(), is used for creating a node, after
allocating memory for the structure of type node, the information for the item (i.e.,
data) has to be read from the user, set next field to NULL and finally returns the
address of the node. Figure 3.2.3 illustrates the creation of a node for single linked list.

Figure 3.2.3. new node with a value of 10

newnode

10 X

100

node* getnode()

{

node* newnode;

newnode = (node *) malloc(sizeof(node));

printf("\n Enter data: ");

scanf("%d", &newnode -> data);

newnode -> next = NULL;
return newnode;

}

NULL

data next

node:

start

Empty list:

struct slinklist

{

int data;

struct slinklist* next;

};

typedef struct slinklist node;

node *start = NULL;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 6

100

40 X

start

100 200 300 400

Creating a Singly Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;

 If the list is not empty, follow the steps given below:

 The next field of the new node is made to point the first node (i.e.

start node) in the list by assigning the address of the first node.

 The start pointer is made to point the new node by assigning the
address of the new node.

 Repeat the above steps ‘n’ times.

Figure 3.2.4 shows 4 items in a single linked list stored at different locations in
memory.

Figure 3.2.4. Single Linked List with 4 nodes

The function createlist(), is used to create ‘n’ number of nodes:

vo id c re at e list(int n)
{

int i;

no de * ne w no de;
no de * t e m p;
fo r(i = 0 ; i < n ; i+ +)
{

ne w no de = get no de();
if(st a rt = = NU LL)
{

sta rt = ne w no de;
}
e ls e
{

te m p = st a rt;

w hile(t e m p - > ne xt ! = NU LL)
te m p = t e m p - > ne xt;

te m p - > ne xt = ne w no de;
}

}
}

30 400

20 300

10 200

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 7

500

40 X

start

200 300 400

500

Insertion of a Node:

One of the most primitive operations that can be done in a singly linked list is the
insertion of a node. Memory is to be allocated for the new node (in a similar way that is
done while creating a list) before reading the data. The new node will contain empty
data field and empty next field. The data field of the new node is then stored with the
information read from the user. The next field of the new node is assigned to NULL. The
new node can then be inserted at three different places namely:

 Inserting a node at the beginning.

 Inserting a node at the end.

 Inserting a node at intermediate position.

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:
newnode -> next = start;
start = newnode;

Figure 3.2.5 shows inserting a node into the single linked list at the beginning.

Figure 3.2.5. Inserting a node at the beginning

The function insert_at_beg(), is used for inserting a node at the beginning

void insert_at_beg()

{

node *newnode;
newnode = getnode();
if(start == NULL)
{

}

else

{

}

}

start = newnode;

newnode -> next = start;
start = newnode;

30 400

20 300

 100

5 100

10 200

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 8

40 500

50 X

start

100 200 300 400

500

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()
newnode = getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:
temp = start;

while(temp -> next != NULL)
temp = temp -> next;

temp -> next = newnode;

Figure 3.2.6 shows inserting a node into the single linked list at the end.

Figure 3.2.6. Inserting a node at the end.

The function insert_at_end(), is used for inserting a node at the end.

void insert_at_end()

{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{

}

else

{

}

}

start = newnode;

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

Inserting a node at intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

 Get the new node using getnode().
newnode = getnode();

30 400

20 300

10 200

100

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 9

start prev temp

100

20 500

200 300

40 X

400

500 new node

 Ensure that the specified position is in between first node and last node. If
not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev
pointers. Then traverse the temp pointer upto the specified position followed
by prev pointer.

 After reaching the specified position, follow the steps given below:

prev -> next = newnode;
newnode -> next = temp;

 Let the intermediate position be 3.

Figure 3.2.7 shows inserting a node into the single linked list at a specified
intermediate position other than beginning and end.

Figure 3.2.7. Inserting a node at an intermediate position.

The function insert_at_mid(), is used for inserting a node in the intermediate position.

void insert_at_mid()

{

node *newnode, *temp, *prev;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > 1 && pos < nodectr)
{

temp = prev = start;
while(ctr < pos)

{
prev = temp;

temp = temp -> next;
ctr++;

}

}

else

{

}

}

prev -> next = newnode;
newnode -> next = temp;

printf("position %d is not a middle position", pos);

50 300

10 200

100

 30 400

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 10

200

40 X

start

10 200

temp
100 200 300 400

Deletion of a node:

Another primitive operation that can be done in a singly linked list is the deletion of a
node. Memory is to be released for the node to be deleted. A node can be deleted from
the list from three different places namely.

 Deleting a node at the beginning.

 Deleting a node at the end.

 Deleting a node at intermediate position.

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;

start = start -> next;
free(temp);

Figure 3.2.8 shows deleting a node at the beginning of a single linked list.

Figure 3.2.8. Deleting a node at the beginning.

The function delete_at_beg(), is used for deleting the first node in the list.

void delete_at_beg()

{

node *temp;
if(start == NULL)
{

}

else

{

}

}

printf("\n No nodes are exist..");
return ;

temp = start;
start = temp -> next;
free(temp);
printf("\n Node deleted ");

30 400

20 300

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 11

30 X

start

100 200 300

40 X

400

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = prev = start;

while(temp -> next != NULL)

{
prev = temp;

temp = temp -> next;

}

prev -> next = NULL;
free(temp);

Figure 3.2.9 shows deleting a node at the end of a single linked list.

Figure 3.2.9. Deleting a node at the end.

The function delete_at_last(), is used for deleting the last node in the list.

void delete_at_last()

{

node *temp, *prev;
if(start == NULL)
{

}
else

{

printf("\n Empty List..");
return ;

temp = start;
prev = start;
while(temp -> next != NULL)

{
prev = temp;

temp = temp -> next;

}

prev -> next = NULL;
free(temp);
printf("\n Node deleted ");

}

}

20 300

10 200

100

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 12

40 X

start

20 300

300 400

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two node).

 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below.

if(pos > 1 && pos < nodectr)
{

temp = prev = start;
ctr = 1;
while(ctr < pos)

{

prev = temp;

temp = temp -> next;
ctr++;

}

prev -> next = temp -> next;
free(temp);
printf("\n node deleted..");

}

Figure 3.2.10 shows deleting a node at a specified intermediate position other than
beginning and end from a single linked list.

Figure 3.2.10. Deleting a node at an intermediate position.

The function delete_at_mid(), is used for deleting the intermediate node in the list.

void delete_at_mid()

{

int ctr = 1, pos, nodectr;
node *temp, *prev;
if(start == NULL)

{

}
else

{

printf("\n Empty List..");
return ;

printf("\n Enter position of node to delete: ");
scanf("%d", &pos);

nodectr = countnode(start);
if(pos > nodectr)

{
printf("\nThis node doesnot exist");

}

30 400

10 300

 200 100

100

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 13

if(pos > 1 && pos < nodectr)

{

temp = prev = start;
while(ctr < pos)
{

prev = temp;

temp = temp -> next;
ctr ++;

}

}
else

{

}

prev -> next = temp -> next;
free(temp);
printf("\n Node deleted..");

printf("\n Invalid position..");
getch();

}

}

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse (move) a linked list, node by node
from the first node, until the end of the list is reached. Traversing a list involves the
following steps:

 Assign the address of start pointer to a temp pointer.

 Display the information from the data field of each node.

The function traverse() is used for traversing and displaying the information stored in
the list from left to right.

Alternatively there is another way to traverse and display the information. That is in
reverse order. The function rev_traverse(), is used for traversing and displaying the
information stored in the list from right to left.

void traverse()

{

node *temp;

temp = start;

printf("\n The contents of List (Left to Right): \n");
if(start == NULL)

printf("\n Empty List");

else

{

while (temp != NULL)

{

printf("%d ->", temp -> data);
temp = temp -> next;

}

}

printf("X");

}

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 14

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list using recursion.

3.3.1. Source Code for the Implementation of Single Linked List:

include <stdio.h>

include <conio.h>

include <stdlib.h>

struct slinklist

{

int data;
struct slinklist *next;

};

typedef struct slinklist node;

node *start = NULL;
int menu()
{

int ch;
clrscr();

printf("\n 1.Create a list ");
printf("\n--------------------------");

printf("\n 2.Insert a node at beginning ");
printf("\n 3.Insert a node at end");
printf("\n 4.Insert a node at middle");
printf("\n--------------------------");

printf("\n 5.Delete a node from beginning");
printf("\n 6.Delete a node from Last");
printf("\n 7.Delete a node from Middle");
printf("\n--------------------------");

printf("\n 8.Traverse the list (Left to Right)");
printf("\n 9.Traverse the list (Right to Left)");

int co unt no de(no de * st)
{

if(st = = NU LL)
ret urn 0 ;

e ls e
ret urn(1 + co unt no de(st - > ne xt));

}

vo id re v_ t ra v e rs e(no de * st)
{

if(st = = NU LL)
{

ret urn;
}
e ls e
{

re v_ t ra v e rs e(st - > ne xt);
printf(" % d - >" , st - > dat a);

}
}

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 15

printf("\n--------------------------");

printf("\n 10. Count nodes ");
printf("\n 11. Exit ");

printf("\n\n Enter your choice: ");
scanf("%d",&ch);
return ch;

}

node* getnode()

{
node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");

scanf("%d", &newnode -> data);
newnode -> next = NULL;
return newnode;

}

int countnode(node *ptr)

{

int count=0;
while(ptr != NULL)

{

count++;
ptr = ptr -> next;

}

return (count);

}

void createlist(int n)

{

int i;
node *newnode;
node *temp;
for(i = 0; i < n; i++)

{

newnode = getnode();
if(start == NULL)
{

}

else

{

}

}

}

start = newnode;

temp = start;

while(temp -> next != NULL)
temp = temp -> next;

temp -> next = newnode;

void traverse()

{

node *temp;
temp = start;

printf("\n The contents of List (Left to Right): \n");
if(start == NULL)
{

}

else

{

printf("\n Empty List");
return;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 16

while(temp != NULL)

{

printf("%d-->", temp -> data);
temp = temp -> next;

}

}
printf(" X ");

}

void rev_traverse(node *start)

{
if(start == NULL)

{

}

else

{

}

}

return;

rev_traverse(start -> next);
printf("%d -->", start -> data);

void insert_at_beg()

{

node *newnode;
newnode = getnode();
if(start == NULL)
{

}
else

{

}

}

start = newnode;

newnode -> next = start;
start = newnode;

void insert_at_end()

{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)

{

}

else

{

}

}

start = newnode;

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

void insert_at_mid()

{

node *newnode, *temp, *prev;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 17

if(pos > 1 && pos < nodectr)

{

temp = prev = start;
while(ctr < pos)
{

prev = temp;

temp = temp -> next;
ctr++;

}

}

else

}

prev -> next = newnode;
newnode -> next = temp;

printf("position %d is not a middle position", pos);

void delete_at_beg()

{

node *temp;
if(start == NULL)
{

}
else

{

}

}

printf("\n No nodes are exist..");
return ;

temp = start;
start = temp -> next;
free(temp);

printf("\n Node deleted ");

void delete_at_last()

{

node *temp, *prev;
if(start == NULL)
{

}

else

{

printf("\n Empty List..");
return ;

temp = start;
prev = start;
while(temp -> next != NULL)

{
prev = temp;

temp = temp -> next;

}

prev -> next = NULL;
free(temp);
printf("\n Node deleted ");

}

}

void delete_at_mid()

{

int ctr = 1, pos, nodectr;
node *temp, *prev;
if(start == NULL)
{

printf("\n Empty List..");

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 18

}
else

{

return ;

printf("\n Enter position of node to delete: ");
scanf("%d", &pos);

nodectr = countnode(start);
if(pos > nodectr)
{

printf("\nThis node doesnot exist");

}
if(pos > 1 && pos < nodectr)

{

temp = prev = start;
while(ctr < pos)

{
prev = temp;

temp = temp -> next;
ctr ++;

}

}

else

{

}

}

}

prev -> next = temp -> next;
free(temp);
printf("\n Node deleted..");

printf("\n Invalid position..");
getch();

void main(void)

{

int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1:
if(start == NULL)

{

case 2:

}

else

printf("\n Number of nodes you want to create: ");
scanf("%d", &n);
createlist(n);

printf("\n List created..");

printf("\n List is already created..");
break;

case 3:

case 4:

insert_at_beg();
break;

insert_at_end();
break;

insert_at_mid();
break;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 19

100

3 0 X

sta rt

100 200 300

400

30 X

sta rt

400 100 200 300

case 5:

case 6:

case 7:

case 8:

case 9:

delete_at_beg();
break;

delete_at_last();
break;

delete_at_mid();
break;

traverse();
break;

printf("\n The contents of List (Right to Left): \n");
rev_traverse(start);

printf(" X ");
break;

case 10:

printf("\n No of nodes : %d ", countnode(start));
break;

case 11 :

exit(0);
}

getch();
}

}

3.4. Using a header node:

A header node is a special dummy node found at the front of the list. The use of header
node is an alternative to remove the first node in a list. For example, the picture below
shows how the list with data 10, 20 and 30 would be represented using a linked list
without and with a header node:

Sing le Linke d List w it h o ut a he a d er no d e

Sing le Linke d List w it h he a d er no d e

Note that if your linked lists do include a header node, there is no need for the special
case code given above for the remove operation; node n can never be the first node in
the list, so there is no need to check for that case. Similarly, having a header node can
simplify the code that adds a node before a given node n.

20 300

10 200

 100

20 300

10 200

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 20

a

b

c

d

100

c X

start

100 200 300

Conceptual structure

Implementation

Note that if you do decide to use a header node, you must remember to initialize an
empty list to contain one (dummy) node, you must remember not to include the
header node in the count of "real" nodes in the list.

It is also useful when information other than that found in each node of the list is
needed. For example, imagine an application in which the number of items in a list is
often calculated. In a standard linked list, the list function to count the number of
nodes has to traverse the entire list every time. However, if the current length is
maintained in a header node, that information can be obtained very quickly.

3.5. Array based linked lists:

Another alternative is to allocate the nodes in blocks. In fact, if you know the maximum
size of a list a head of time, you can pre-allocate the nodes in a single array. The result
is a hybrid structure – an array based linked list. Figure 3.5.1 shows an example of null
terminated single linked list where all the nodes are allocated contiguously in an array.

Figure 3.5.1. An array based linked list

3.6. Double Linked List:

A double linked list is a two-way list in which all nodes will have two links. This helps in
accessing both successor node and predecessor node from the given node position. It
provides bi-directional traversing. Each node contains three fields:

 Left link.

 Data.

 Right link.

The left link points to the predecessor node and the right link points to the successor
node. The data field stores the required data.

Many applications require searching forward and backward thru nodes of a list. For
example searching for a name in a telephone directory would need forward and
backward scanning thru a region of the whole list.

The basic operations in a double linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

b 300

a 200

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 21

NULL

node:

start

Empty list:

newnode

100

A double linked list is shown in figure 3.3.1.

Figure 3.3.1. Double Linked List

The beginning of the double linked list is stored in a "start" pointer which points to the
first node. The first node’s left link and last node’s right link is set to NULL.

The following code gives the structure definition:

Figure 3.4.1. Structure definition, double link node and empty list

Creating a node for Double Linked List:

Creating a double linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by
using the malloc() function. The function getnode(), is used for creating a node, after
allocating memory for the structure of type node, the information for the item (i.e.,
data) has to be read from the user and set left field to NULL and right field also set to
NULL (see figure 3.2.2).

Figure 3.4.2. new node with a value of 10

X 10 X

node* getnode()

{

node* newnode;

newnode = (node *) malloc(sizeof(node));

printf("\n Enter data: ");

scanf("%d", &newnode -> data);
newnode -> left = NULL;

newnode -> right = NULL;
return newnode;

}

left data right

struct dlinklist

{

struct dlinklist *left;
int data;

struct dlinklist *right;

};

typedef struct dlinklist node;
node *start = NULL;

STACK
Stores the previous

HEAP

100

start

The start

pointer holds
the address
of the first
node of the
list.

100 200 300

Stores the data. Stores the next
node address.

The right field of the
last node is NULL.

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 22

start

100 200 300

Creating a Double Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().

newnode =getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

 The left field of the new node is made to point the previous node.

 The previous nodes right field must be assigned with address of the

new node.

 Repeat the above steps ‘n’ times.

The function createlist(), is used to create ‘n’ number of nodes:

Figure 3.4.3 shows 3 items in a double linked list stored at different locations.

Figure 3.4.3. Double Linked List with 3 nodes

 100 20 300

100

vo id c re at e list(int n)
{

int i;

no de * ne w no de;
no de * t e m p;
fo r(i = 0 ; i < n; i+ +)
{

ne w no de = get no de();
if(st a rt = = NU LL)
{

sta rt = ne w no de;
}
e ls e
{

te m p = st a rt;
w hile(t e m p - > right)

te m p = t e m p - > right;
te m p - > right = ne w no de;
ne w no de - > left = t e m p;

}
}

}

X 10 200

 200 30 X

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 23

400

X 40 100

400 10 200

start

100 200 300

400

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().

newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

newnode -> right = start;

start -> left = newnode;
start = newnode;

The function dbl_insert_beg(), is used for inserting a node at the beginning. Figure

3.4.4 shows inserting a node into the double linked list at the beginning.

 100 20 300

Figure 3.4.4. Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()

newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:

temp = start;

while(temp -> right != NULL)
temp = temp -> right;

temp -> right = newnode;
newnode -> left = temp;

The function dbl_insert_end(), is used for inserting a node at the end. Figure 3.4.5
shows inserting a node into the double linked list at the end.

 200 30 X

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 24

100

200 30 400

300

300 40 X

start

100 200

400

 100 20 300

Figure 3.4.5. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

 Get the new node using getnode().

newnode=getnode();

 Ensure that the specified position is in between first node and last node. If
not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev
pointers. Then traverse the temp pointer upto the specified position followed
by prev pointer.

 After reaching the specified position, follow the steps given below:

newnode -> left = temp;

newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;

The function dbl_insert_mid(), is used for inserting a node in the intermediate
position. Figure 3.4.6 shows inserting a node into the double linked list at a specified
intermediate position other than beginning and end.

Figure 3.4.6. Inserting a node at an intermediate position

start

100

400

X

100

400

200

20 300
10 400

200

300

30 X

X 10 200

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 25

200

start

X

100

10 200

200 300

start

30 X

100 200

200

300

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;

start = start -> right;
start -> left = NULL;
free(temp);

The function dbl_delete_beg(), is used for deleting the first node in the list. Figure

3.4.6 shows deleting a node at the beginning of a double linked list.

 200 30 X

Figure 3.4.6. Deleting a node at beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below:

temp = start;
while(temp -> right != NULL)

{
temp = temp -> right;

}

temp -> left -> right = NULL;
free(temp);

The function dbl_delete_last(), is used for deleting the last node in the list. Figure 3.4.7
shows deleting a node at the end of a double linked list.

Figure 3.4.7. Deleting a node at the end

 100 20 X

100

X 20 300

X 10 200

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 26

X 10 300 100 30 X

200

start

100 20 300

100 300

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two nodes).

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

 Get the position of the node to delete.

 Ensure that the specified position is in between first node and last
node. If not, specified position is invalid.

 Then perform the following steps:

if(pos > 1 && pos < nodectr)
{

temp = start;
i = 1;
while(i < pos)

{

temp = temp -> right;
i++;

}

temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);

printf("\n node deleted..");

}

The function delete_at_mid(), is used for deleting the intermediate node in the list.
Figure 3.4.8 shows deleting a node at a specified intermediate position other than
beginning and end from a double linked list.

100

Figure 3.4.8 Deleting a node at an intermediate position

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse the list, node by node from the first
node, until the end of the list is reached. The function traverse_left_right() is used for
traversing and displaying the information stored in the list from left to right.

The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 27

temp = start;
while(temp != NULL)
{

print temp -> data;
temp = temp -> right;

}

Traversal and displaying a list (Right to Left):

To display the information from right to left, you have to traverse the list, node by
node from the first node, until the end of the list is reached. The function
traverse_right_left() is used for traversing and displaying the information stored in the
list from right to left. The following steps are followed, to traverse a list from right to
left:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:
temp = start;

while(temp -> right != NULL)
temp = temp -> right;

while(temp != NULL)

{

print temp -> data;
temp = temp -> left;

}

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list (using recursion).

3.5. A Complete Source Code for the Implementation of Double Linked List:

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

struct dlinklist

{

struct dlinklist *left;
int data;
struct dlinklist *right;

};

typedef struct dlinklist node;
node *start = NULL;

int co untno de(no de * sta rt)
{

if(st a rt = = NU LL)
ret urn 0 ;

e ls e
ret urn(1 + co unt no de(st a rt - > right));

}

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 28

node* getnode()

{
node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");

scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

}

int countnode(node *start)

{
if(start == NULL)

return 0;
else

}

return 1 + countnode(start -> right);

int menu()

{

int ch;
clrscr();
printf("\n 1.Create");

printf("\n------------------------------");

printf("\n 2. Insert a node at beginning ");
printf("\n 3. Insert a node at end");
printf("\n 4. Insert a node at middle");
printf("\n------------------------------");

printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n------------------------------");

printf("\n 8. Traverse the list from Left to Right ");
printf("\n 9. Traverse the list from Right to Left ");
printf("\n------------------------------");

printf("\n 10.Count the Number of nodes in the list");
printf("\n 11.Exit ");

printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void createlist(int n)

{

int i;
node *newnode;
node *temp;
for(i = 0; i < n; i++)

{

newnode = getnode();
if(start == NULL)

start = newnode;
else

{

}

}

}

temp = start;
while(temp -> right)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 29

void traverse_left_to_right()

{

node *temp;
temp = start;

printf("\n The contents of List: ");
if(start == NULL)

printf("\n Empty List");
else

{

while(temp != NULL)

{

printf("\t %d ", temp -> data);
temp = temp -> right;

}

}

}
void traverse_right_to_left()

{

node *temp;
temp = start;

printf("\n The contents of List: ");
if(start == NULL)

printf("\n Empty List");
else

{

}

while(temp -> right != NULL)
temp = temp -> right;

while(temp != NULL)

{

printf("\t%d", temp -> data);
temp = temp -> left;

}

}
void dll_insert_beg()

{

node *newnode;
newnode = getnode();
if(start == NULL)

start = newnode;
else

{

}

}

newnode -> right = start;
start -> left = newnode;
start = newnode;

void dll_insert_end()

{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)

start = newnode;

else

{

}

}

temp = start;
while(temp -> right != NULL)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 30

void dll_insert_mid()

{

node *newnode,*temp;
int pos, nodectr, ctr = 1;
newnode = getnode();

printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos - nodectr >= 2)

{

printf("\n Position is out of range..");
return;

}
if(pos > 1 && pos < nodectr)

{

temp = start;
while(ctr < pos - 1)
{

temp = temp -> right;
ctr++;

}

}

else

}

newnode -> left = temp;

newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;

printf("position %d of list is not a middle position ", pos);

void dll_delete_beg()

{

node *temp;
if(start == NULL)
{

}
else

{

}

}

printf("\n Empty list");
getch();
return ;

temp = start;
start = start -> right;
start -> left = NULL;
free(temp);

void dll_delete_last()

{

node *temp;
if(start == NULL)
{

}
else

{

printf("\n Empty list");
getch();
return ;

temp = start;
while(temp -> right != NULL)

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 31

temp = temp -> right;
temp -> left -> right = NULL;
free(temp);
temp = NULL;

}

}

void dll_delete_mid()

{

int i = 0, pos, nodectr;
node *temp;
if(start == NULL)

{

}
else

{

printf("\n Empty List");
getch();
return;

printf("\n Enter the position of the node to delete: ");
scanf("%d", &pos);

nodectr = countnode(start);
if(pos > nodectr)
{

printf("\nthis node does not exist");
getch();
return;

}
if(pos > 1 && pos < nodectr)

{

temp = start;
i = 1;
while(i < pos)

{

temp = temp -> right;
i++;

}

}
else

{

}

}

}

temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");

printf("\n It is not a middle position..");
getch();

void main(void)

{

int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :

printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);

createlist(n);

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 32

40 100

start

100 200 300 400

printf("\n List created..");
break;

case 2 :

dll_insert_beg();
break;

case 3 :

dll_insert_end();
break;

case 4 :

dll_insert_mid();
break;

case 5 :

dll_delete_beg();
break;

case 6 :

dll_delete_last();
break;

case 7 :

dll_delete_mid();
break;

case 8 :

traverse_left_to_right();
break;

case 9 :

traverse_right_to_left();
break;

case 10 :

printf("\n Number of nodes: %d", countnode(start));
break;

case 11:

exit(0);

}
getch();

}

}

3.7. Circular Single Linked List:

It is just a single linked list in which the link field of the last node points back to the
address of the first node. A circular linked list has no beginning and no end. It is
necessary to establish a special pointer called start pointer always pointing to the first
node of the list. Circular linked lists are frequently used instead of ordinary linked list
because many operations are much easier to implement. In circular linked list no null
pointers are used, hence all pointers contain valid address.

A circular single linked list is shown in figure 3.6.1.

Figure 3.6.1. Circular Single Linked List

30 400

20 300

10 200

100

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 33

The basic operations in a circular single linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

Creating a circular single Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;

 If the list is not empty, follow the steps given below:

temp = start;

while(temp -> next != NULL)
temp = temp -> next;

temp -> next = newnode;

 Repeat the above steps ‘n’ times.

 newnode -> next = start;

The function createlist(), is used to create ‘n’ number of nodes:

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the
circular list:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

 If the list is not empty, follow the steps given below:

last = start;

while(last -> next != start)
last = last -> next;

newnode -> next = start;
start = newnode;
last -> next = start;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 34

500

40 500

start

200 300 400

500

40 500

50 100

start

100 200 300 400

500

The function cll_insert_beg(), is used for inserting a node at the beginning. Figure

3.6.2 shows inserting a node into the circular single linked list at the beginning.

Figure 3.6.2. Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

 If the list is not empty follow the steps given below:

temp = start;

while(temp -> next != start)
temp = temp -> next;

temp -> next = newnode;
newnode -> next = start;

The function cll_insert_end(), is used for inserting a node at the end.

Figure 3.6.3 shows inserting a node into the circular single linked list at the end.

Figure 3.6.3 Inserting a node at the end.

30 400

20 300

10 200

100

30 400

20 300

 100

5 100

10 200

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 35

200

start

10 200

temp
100 200 300

40 200

400

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If the list is empty, display a message ‘Empty List’.

 If the list is not empty, follow the steps given below:

last = temp = start;

while(last -> next != start)
last = last -> next;

start = start -> next;
last -> next = start;

 After deleting the node, if the list is empty then start = NULL.

The function cll_delete_beg(), is used for deleting the first node in the list. Figure 3.6.4
shows deleting a node at the beginning of a circular single linked list.

Figure 3.6.4. Deleting a node at beginning.

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If the list is empty, display a message ‘Empty List’.

 If the list is not empty, follow the steps given below:

temp = start;

prev = start;
while(temp -> next != start)

{
prev = temp;

temp = temp -> next;

}

prev -> next = start;

 After deleting the node, if the list is empty then start = NULL.

The function cll_delete_last(), is used for deleting the last node in the list.

30 400

20 300

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 36

start

40 100

400

Figure 3.6.5 shows deleting a node at the end of a circular single linked list.

 30 100

100 200 300

Figure 3.6.5. Deleting a node at the end.

Traversing a circular single linked list from left to right:

The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;
do

{

printf("%d ", temp -> data);
temp = temp -> next;

} while(temp != start);

3.7.1. Source Code for Circular Single Linked List:

include <stdio.h>
include <conio.h>

include <stdlib.h>

struct cslinklist

{

int data;
struct cslinklist *next;

};

typedef struct cslinklist node;

node *start = NULL;

int nodectr;

node* getnode()

{
node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");

scanf("%d", &newnode -> data);
newnode -> next = NULL;
return newnode;

}

100

 10 200

20 300

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 37

int menu()

{

int ch;
clrscr();

printf("\n 1. Create a list ");
printf("\n\n--------------------------");

printf("\n 2. Insert a node at beginning ");
printf("\n 3. Insert a node at end");
printf("\n 4. Insert a node at middle");
printf("\n\n--------------------------");

printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n\n--------------------------");

printf("\n 8. Display the list");
printf("\n 9. Exit"); printf("\n\n-------

-------------------");

printf("\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void createlist(int n)

{

int i;
node *newnode;
node *temp;
nodectr = n;
for(i = 0; i < n ; i++)

{

newnode = getnode();
if(start == NULL)

{

}

else

{

}

}

start = newnode;

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

newnode ->next = start; /* last node is pointing to starting node */

}

void display()

{

node *temp;
temp = start;

printf("\n The contents of List (Left to Right): ");
if(start == NULL)

printf("\n Empty List");
else

{

do

{

printf("\t %d ", temp -> data);
temp = temp -> next;

} while(temp != start);
printf(" X ");

}

}

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 38

void cll_insert_beg()

{

node *newnode, *last;
newnode = getnode();
if(start == NULL)
{

}
else

{

}

start = newnode;
newnode -> next = start;

last = start;
while(last -> next != start)

last = last -> next;
newnode -> next = start;
start = newnode;
last -> next = start;

printf("\n Node inserted at beginning..");
nodectr++;

}

void cll_insert_end()

{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{

}

else

{

}

start = newnode;
newnode -> next = start;

temp = start;
while(temp -> next != start)

temp = temp -> next;
temp -> next = newnode;
newnode -> next = start;

printf("\n Node inserted at end..");
nodectr++;

}

void cll_insert_mid()

{

node *newnode, *temp, *prev;
int i, pos ;
newnode = getnode();

printf("\n Enter the position: ");
scanf("%d", &pos);
if(pos > 1 && pos < nodectr)
{

temp = start;
prev = temp;
i = 1;
while(i < pos)

{
prev = temp;

temp = temp -> next;
i++;

}

prev -> next = newnode;
newnode -> next = temp;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 39

}

else

{

}

}

nodectr++;

printf("\n Node inserted at middle..");

printf("position %d of list is not a middle position ", pos);

void cll_delete_beg()

{

node *temp, *last;
if(start == NULL)
{

}

else

{

}

}

printf("\n No nodes exist..");
getch();

return ;

last = temp = start;
while(last -> next != start)

last = last -> next;
start = start -> next;

last -> next = start;
free(temp);

nodectr--;
printf("\n Node deleted..");
if(nodectr == 0)

start = NULL;

void cll_delete_last()

{

node *temp,*prev;
if(start == NULL)
{

}
else

{

printf("\n No nodes exist..");
getch();
return ;

temp = start;
prev = start;
while(temp -> next != start)

{
prev = temp;

temp = temp -> next;

}

prev -> next = start;
free(temp);

nodectr--;
if(nodectr == 0)

start = NULL;
printf("\n Node deleted..");

}

}

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 40

void cll_delete_mid()

{
int i = 0, pos;

node *temp, *prev;

if(start == NULL)

{

}

else

{

printf("\n No nodes exist..");
getch();

return ;

printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodectr)

{

printf("\nThis node does not exist");
getch();
return;

}
if(pos > 1 && pos < nodectr)

{

temp=start;
prev = start;
i = 0;
while(i < pos - 1)

{
prev = temp;

temp = temp -> next ;
i++;

}

}
else

{

}
}

}

prev -> next = temp -> next;
free(temp);
nodectr--;

printf("\n Node Deleted..");

printf("\n It is not a middle position..");
getch();

void main(void)

{

int result;
int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :

if(start == NULL)

{

printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);

createlist(n);
printf("\nList created..");

}

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 41

100 20 300 300 10 200 200 30 100

100 200 300

else

break;
case 2 :

printf("\n List is already Exist..");

cll_insert_beg();
break;

case 3 :

cll_insert_end();
break;

case 4 :

cll_insert_mid();
break;

case 5 :

cll_delete_beg();
break;

case 6 :

cll_delete_last();
break;

case 7 :

cll_delete_mid();
break;

case 8 :

display();
break;

case 9 :

exit(0);

}
getch();

}

}

3.8. Circular Double Linked List:

A circular double linked list has both successor pointer and predecessor pointer in
circular manner. The objective behind considering circular double linked list is to
simplify the insertion and deletion operations performed on double linked list. In
circular double linked list the right link of the right most node points back to the start
node and left link of the first node points to the last node. A circular double linked list is
shown in figure 3.8.1.

100

start

Figure 3.8.1. Circular Double Linked List

The basic operations in a circular double linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 42

Creating a Circular Double Linked List with ‘n’ number of nodes:

The following steps are to be followed to create ‘n’ number of nodes:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty, then do the following

start = newnode;

newnode -> left = start;
newnode ->right = start;

 If the list is not empty, follow the steps given below:

newnode -> left = start -> left;
newnode -> right = start;

start -> left->right = newnode;
start -> left = newnode;

 Repeat the above steps ‘n’ times.

The function cdll_createlist(), is used to create ‘n’ number of nodes:

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().
newnode=getnode();

 If the list is empty, then

start = newnode;
newnode -> left = start;
newnode -> right = start;

 If the list is not empty, follow the steps given below:

newnode -> left = start -> left;
newnode -> right = start;

start -> left -> right = newnode;
start -> left = newnode;

start = newnode;

The function cdll_insert_beg(), is used for inserting a node at the beginning. Figure

3.8.2 shows inserting a node into the circular double linked list at the beginning.

Figure 3.8.2. Inserting a node at the beginning

start

400

400 10 200 100 20 300 200 30 400

100 200 300

300

400

40 100

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 43

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()
newnode=getnode();

 If the list is empty, then

start = newnode;
newnode -> left = start;
newnode -> right = start;

 If the list is not empty follow the steps given below:

newnode -> left = start -> left;
newnode -> right = start;

start -> left -> right = newnode;
start -> left = newnode;

The function cdll_insert_end(), is used for inserting a node at the end. Figure 3.8.3
shows inserting a node into the circular linked list at the end.

Figure 3.8.3. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

 Get the new node using getnode().

newnode=getnode();

 Ensure that the specified position is in between first node and last node. If

not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp. Then traverse
the temp pointer upto the specified position.

 After reaching the specified position, follow the steps given below:

newnode -> left = temp;

newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;
nodectr++;

start

100

400 10 200 100 20 300 200 30 400

100 200 300

300

400

40 100

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 44

The function cdll_insert_mid(), is used for inserting a node in the intermediate
position. Figure 3.8.4 shows inserting a node into the circular double linked list at a
specified intermediate position other than beginning and end.

Figure 3.8.4. Inserting a node at an intermediate position

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;
start = start -> right;

temp -> left -> right = start;
start -> left = temp -> left;

The function cdll_delete_beg(), is used for deleting the first node in the list. Figure

3.8.5 shows deleting a node at the beginning of a circular double linked list.

Figure 3.8.5. Deleting a node at beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If list is empty then display ‘Empty List’ message

 If the list is not empty, follow the steps given below:

start

200

300

100

10 200 300

200

20 300 200

300

30 200

start

100
100

400

40 200

300 10 400

100

400

200

20 300

200

300

30 100

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 45

temp = start;
while(temp -> right != start)

{

temp = temp -> right;

}

temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;

The function cdll_delete_last(), is used for deleting the last node in the list. Figure

3.8.6 shows deleting a node at the end of a circular double linked list.

Figure 3.8.6. Deleting a node at the end

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two node).

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

 Get the position of the node to delete.

 Ensure that the specified position is in between first node and last

node. If not, specified position is invalid.

 Then perform the following steps:

if(pos > 1 && pos < nodectr)

{

temp = start;
i = 1;
while(i < pos)

{

temp = temp -> right ;
i++;

}

temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);

printf("\n node deleted..");
nodectr--;

}

The function cdll_delete_mid(), is used for deleting the intermediate node in the list.

start

100

200 10 200 100 20 100 200 30 100

100 200 300

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 46

Figure 3.8.7 shows deleting a node at a specified intermediate position other than
beginning and end from a circular double linked list.

Figure 3.8.7. Deleting a node at an intermediate position

Traversing a circular double linked list from left to right:

The following steps are followed, to traverse a list from left to right:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:
temp = start;

Print temp -> data;
temp = temp -> right;
while(temp != start)

{

print temp -> data;
temp = temp -> right;

}

The function cdll_display_left _right(), is used for traversing from left to right.

Traversing a circular double linked list from right to left:

The following steps are followed, to traverse a list from right to left:

 If list is empty then display ‘Empty List’ message.

 If the list is not empty, follow the steps given below:

temp = start;
do

{

temp = temp -> left;
print temp -> data;

} while(temp != start);

The function cdll_display_right_left(), is used for traversing from right to left.

3.8.1. Source Code for Circular Double Linked List:

include <stdio.h>
include <stdlib.h>

include <conio.h>

start

100

300 10 300 100 20 300 100 30 100

100 200 300

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 47

struct cdlinklist

{

struct cdlinklist *left;
int data;
struct cdlinklist *right;

};

typedef struct cdlinklist node;
node *start = NULL;

int nodectr;

node* getnode()

{
node * newnode;

newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");

scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

}

int menu()

{

int ch;
clrscr();
printf("\n 1. Create ");

printf("\n\n--------------------------");

printf("\n 2. Insert a node at Beginning");
printf("\n 3. Insert a node at End");
printf("\n 4. Insert a node at Middle");
printf("\n\n--------------------------");

printf("\n 5. Delete a node from Beginning");
printf("\n 6. Delete a node from End");
printf("\n 7. Delete a node from Middle");
printf("\n\n--------------------------");

printf("\n 8. Display the list from Left to Right");
printf("\n 9. Display the list from Right to Left");
printf("\n 10.Exit");

printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void cdll_createlist(int n)

{
int i;

node *newnode, *temp;
if(start == NULL)

{

nodectr = n;
for(i = 0; i < n; i++)

{

newnode = getnode();
if(start == NULL)
{

}
else

{

start = newnode;
newnode -> left = start;
newnode ->right = start;

newnode -> left = start -> left;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 48

}

}

else

newnode -> right = start;

start -> left->right = newnode;
start -> left = newnode;

}

printf("\n List already exists..");

}

void cdll_display_left_right()

{

node *temp;
temp = start;
if(start == NULL)

printf("\n Empty List");

else

{

printf("\n The contents of List: ");
printf(" %d ", temp -> data);
temp = temp -> right;
while(temp != start)

{

printf(" %d ", temp -> data);
temp = temp -> right;

}

}

}

void cdll_display_right_left()

{

node *temp;
temp = start;
if(start == NULL)

printf("\n Empty List");

else

{

printf("\n The contents of List: ");
do

{

temp = temp -> left;
printf("\t%d", temp -> data);

} while(temp != start);
}

}

void cdll_insert_beg()

{

node *newnode;
newnode = getnode();
nodectr++;
if(start == NULL)

{

}
else

{

start = newnode;
newnode -> left = start;
newnode -> right = start;

newnode -> left = start -> left;
newnode -> right = start;

start -> left -> right = newnode;
start -> left = newnode;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 49

start = newnode;

}

}

void cdll_insert_end()

{

node *newnode,*temp;
newnode = getnode();
nodectr++;
if(start == NULL)
{

}

else

{

}

start = newnode;
newnode -> left = start;
newnode -> right = start;

newnode -> left = start -> left;
newnode -> right = start;

start -> left -> right = newnode;
start -> left = newnode;

printf("\n Node Inserted at End");

}

void cdll_insert_mid()

{

node *newnode, *temp, *prev;
int pos, ctr = 1;

newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
if(pos - nodectr >= 2)
{

printf("\n Position is out of range..");
return;

}
if(pos > 1 && pos <= nodectr)

{

temp = start;
while(ctr < pos - 1)
{

temp = temp -> right;
ctr++;

}

}

else

}

}

newnode -> left = temp;

newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;
nodectr++;
printf("\n Node Inserted at Middle.. ");

printf("position %d of list is not a middle position", pos);

void cdll_delete_beg()

{

node *temp;
if(start == NULL)
{

printf("\n No nodes exist..");

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 50

}

else

{

getch();
return ;

nodectr--;
if(nodectr == 0)
{

}

else

{

}

free(start);
start = NULL;

temp = start;
start = start -> right;

temp -> left -> right = start;
start -> left = temp -> left;
free(temp);

printf("\n Node deleted at Beginning..");
}

}

void cdll_delete_last()

{

node *temp;
if(start == NULL)
{

}
else

{

printf("\n No nodes exist..");
getch();
return;

nodectr--;
if(nodectr == 0)

{

}
else

{

}

free(start);
start = NULL;

temp = start;
while(temp -> right != start)

temp = temp -> right;
temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;
free(temp);

printf("\n Node deleted from end ");
}

}

void cdll_delete_mid()

{

int ctr = 1, pos;
node *temp;
if(start == NULL)
{

printf("\n No nodes exist..");
getch();
return;

}

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 51

else

{

printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodectr)

{

printf("\nThis node does not exist");
getch();
return;

}
if(pos > 1 && pos < nodectr)

{

temp = start;
while(ctr < pos)
{

temp = temp -> right ;
ctr++;

}

}

else

{

}
}

}

temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);

printf("\n node deleted..");
nodectr--;

printf("\n It is not a middle position..");
getch();

void main(void)

{

int ch,n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :

printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);

cdll_createlist(n);
printf("\n List created..");
break;

case 2 :

cdll_insert_beg();
break;

case 3 :

cdll_insert_end();
break;

case 4 :

cdll_insert_mid();
break;

case 5 :

cdll_delete_beg();
break;

case 6 :

cdll_delete_last();
break;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 52

case 7 :

cdll_delete_mid();
break;

case 8 :

cdll_display_left_right();
break;

case 9 :

cdll_display_right_left();
break;

case 10:
exit(0);

}
getch();

}

}

3.9. Comparison of Linked List Variations:

The major disadvantage of doubly linked lists (over singly linked lists) is that they
require more space (every node has two pointer fields instead of one). Also, the code
to manipulate doubly linked lists needs to maintain the prev fields as well as the next
fields; the more fields that have to be maintained, the more chance there is for errors.

The major advantage of doubly linked lists is that they make some operations (like the
removal of a given node, or a right-to-left traversal of the list) more efficient.

The major advantage of circular lists (over non-circular lists) is that they eliminate
some extra-case code for some operations (like deleting last node). Also, some
applications lead naturally to circular list representations. For example, a computer
network might best be modeled using a circular list.

3.10. Polynomials:

A polynomial is of the form:

n
 i

ci x
i 0

Where, ci is the coefficient of the ith term and
n is the degree of the polynomial

Some examples are:

5x2 + 3x + 1

12x3 – 4x

5x4 – 8x3 + 2x2 + 4x1 + 9x0

It is not necessary to write terms of the polynomials in decreasing order of degree. In
other words the two polynomials 1 + x and x + 1 are equivalent.

The computer implementation requires implementing polynomials as a list of pairs of
coefficient and exponent. Each of these pairs will constitute a structure, so a polynomial
will be represented as a list of structures. A linked list structure that represents

polynomials 5x4 – 8x3 + 2x2 + 4x1 + 9x0 illustrates in figure 3.10.1.

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 53

500

5 4 100 -8 3 200 2 2 300 4 1 400

start

500 100 200 300 400

9 0 X

Figure 3.10.1. Single Linked List for the polynomial F(x) = 5x4 – 8x3 + 2x2 + 4x1 + 9x0

3.10.1. Source code for polynomial creation with help of linked list:

#include <conio.h>
#include <stdio.h>

#include <malloc.h>

struct link

{

float coef;
int expo;
struct link *next;

};

typedef struct link node;
node * getnode()

{
node *tmp;

tmp =(node *) malloc(sizeof(node));
printf("\n Enter Coefficient : ");
fflush(stdin);

scanf("%f",&tmp->coef);
printf("\n Enter Exponent : ");
fflush(stdin);
scanf("%d",&tmp->expo);
tmp->next = NULL;
return tmp;

}

node * create_poly (node *p)

{
char ch;

node *temp,*newnode;
while(1)

{

printf ("\n Do U Want polynomial node (y/n): ");
ch = getche();
if(ch == 'n')

break;
newnode = getnode();
if(p == NULL)

p = newnode;
else

{

}

}
return p;

}

temp = p;

while(temp->next != NULL)
temp = temp->next;

temp->next = newnode;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 54

void display (node *p)

{

node *t = p;
while (t != NULL)
{

printf("+ %.2f", t -> coef);

printf("X^ %d", t -> expo);
t =t -> next;

}

}

void main()

{

}

node *poly1 = NULL ,*poly2 = NULL,*poly3=NULL;
clrscr();

printf("\nEnter First Polynomial..(in ascending-order of exponent)");
poly1 = create_poly (poly1);

printf("\nEnter Second Polynomial..(in ascending-order of exponent)");
poly2 = create_poly (poly2);
clrscr();

printf("\n Enter Polynomial 1: ");
display (poly1);

printf("\n Enter Polynomial 2: ");
display (poly2);
getch();

3.10.2. Addition of Polynomials:

To add two polynomials we need to scan them once. If we find terms with the same
exponent in the two polynomials, then we add the coefficients; otherwise, we copy the
term of larger exponent into the sum and go on. When we reach at the end of one of
the polynomial, then remaining part of the other is copied into the sum.

To add two polynomials follow the following steps:

 Read two polynomials.

 Add them.

 Display the resultant polynomial.

3.10.3. Source code for polynomial addition with help of linked list:

#include <conio.h>
#include <stdio.h>

#include <malloc.h>

struct link

{

float coef;
int expo;
struct link *next;

};

typedef struct link node;

node * getnode()

{
node *tmp;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 55

tmp =(node *) malloc(sizeof(node));
printf("\n Enter Coefficient : ");
fflush(stdin);

scanf("%f",&tmp->coef);
printf("\n Enter Exponent : ");
fflush(stdin);
scanf("%d",&tmp->expo);
tmp->next = NULL;
return tmp;

}

node * create_poly (node *p)

{
char ch;

node *temp,*newnode;
while(1)

{

printf ("\n Do U Want polynomial node (y/n): ");
ch = getche();
if(ch == 'n')

break;
newnode = getnode();
if(p == NULL)

p = newnode;
else

{

}

}
return p;

}

temp = p;
while(temp->next != NULL)

temp = temp->next;
temp->next = newnode;

void display (node *p)

{

node *t = p;
while (t != NULL)
{

printf("+ %.2f", t -> coef);

printf("X^ %d", t -> expo);
t = t -> next;

}

}

void add_poly(node *p1,node *p2)

{

node *newnode;
while(1)

{
if(p1 == NULL || p2 == NULL)

break;

if(p1->expo == p2->expo)

{

}

else

{

printf("+ %.2f X ̂ %d",p1->coef+p2->coef,p1->expo);
p1 = p1->next; p2 = p2->next;

if(p1->expo < p2->expo)

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 56

{

}

else

{

}
}

}

printf("+ %.2f X ^%d",p1->coef,p1->expo);
p1 = p1->next;

printf(" + %.2f X ^%d",p2->coef,p2->expo);
p2 = p2->next;

while(p1 != NULL)

{

printf("+ %.2f X ^%d",p1->coef,p1->expo);
p1 = p1->next;

}

while(p2 != NULL)

{

printf("+ %.2f X ^%d",p2->coef,p2->expo);
p2 = p2->next;

}

}

void main()

{

}

node *poly1 = NULL ,*poly2 = NULL,*poly3=NULL;
clrscr();

printf("\nEnter First Polynomial..(in ascending-order of exponent)");
poly1 = create_poly (poly1);

printf("\nEnter Second Polynomial..(in ascending-order of exponent)");
poly2 = create_poly (poly2);
clrscr();

printf("\n Enter Polynomial 1: ");
display (poly1);

printf("\n Enter Polynomial 2: ");
display (poly2);

printf("\n Resultant Polynomial : ");
add_poly(poly1, poly2);
display (poly3);
getch();

Exercise

1. Write a “C” functions to split a given list of integers represented by a single

linked list into two lists in the following way. Let the list be L = (l0, l1, ….., ln).
The resultant lists would be R1 = (l0, l2, l4, …..) and R2 = (l1, l3, l5, …..).

2. Write a “C” function to insert a node “t” before a node pointed to by “X” in a
single linked list “L”.

3. Write a “C” function to delete a node pointed to by “p” from a single linked list
“L”.

4. Suppose that an ordered list L = (l0, l1, …..,ln) is represented by a single linked

list. It is required to append the list L = (ln, l0, l1, ….., ln) after another ordered
list M represented by a single linked list.

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 57

5. Implement the following function as a new function for the linked list
toolkit.

Precondition: head_ptr points to the start of a linked list. The list might
be empty or it might be non-empty.

Postcondition: The return value is the number of occurrences of 42 in
the data field of a node on the linked list. The list itself is unchanged.

6. Implement the following function as a new function for the linked list
toolkit.

Precondition: head_ptr points to the start of a linked list. The list might
be empty or it might be non-empty.

Postcondition: The return value is true if the list has at least one
occurrence of the number 42 in the data part of a node.

7. Implement the following function as a new function for the linked list
toolkit.

Precondition: head_ptr points to the start of a linked list. The list might
be empty or it might be non-empty.

Postcondition: The return value is the sum of all the data components of
all the nodes. NOTE: If the list is empty, the function returns 0.

8. Write a “C” function to concatenate two circular linked lists producing another
circular linked list.

9. Write “C” functions to compute the following operations on polynomials
represented as singly connected linked list of nonzero terms.

1. Evaluation of a polynomial

2. Multiplication of two polynomials.

10. Write a “C” function to represent a sparse matrix having “m” rows and “n”
columns using linked list.

11. Write a “C” function to print a sparse matrix, each row in one line of output and
properly formatted, with zero being printed in place of zero elements.

12. Write “C” functions to:

1. Add two m X n sparse matrices and

2. Multiply two m X n sparse matrices.

Where all sparse matrices are to be represented by linked lists.

13. Consider representing a linked list of integers using arrays. Write a “C” function

to delete the ith node from the list.

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 58

Multiple Choice Questions

1. Which among the following is a linear data structure: [D]
A. Queue

B. Stack

C. Linked List

D. all the above

2. Which among the following is a dynamic data structure: [A]
A. Double Linked List

B. Queue

C. Stack

D. all the above

3. The link field in a node contains: [A]
A. address of the next node

B. data of previous node

C. data of next node

D. data of current node

4. Memory is allocated dynamically to a data structure during execution
by ------- function.

[D]

A. malloc()

B. Calloc()

C. realloc()

D. all the above

5. How many null pointer/s exist in a circular double linked list? [D]
A. 1

B. 2

C. 3

D. 0

[]

6. Suppose that p is a pointer variable that contains the NULL pointer.
What happens if your program tries to read or write *p?
A. A syntax error always occurs at compilation time.

B. A run-time error always occurs when *p is evaluated.

C. A run-time error always occurs when the program finishes.

D. The results are unpredictable.

7. What kind of list is best to answer questions such as: "What is the
item at position n?"
A. Lists implemented with an array.

B. Doubly-linked lists.

C. Singly-linked lists.

D. Doubly-linked or singly-linked lists are equally best.

[A]

8. In a single linked list which operation depends on the length of the list. [A]

A. Delete the last element of the list

B. Add an element before the first element of the list

C. Delete the first element of the list

D. Interchange the first two elements of the list

9. A double linked list is declared as follows:
struct dllist
{

[A]

struct dllist *fwd, *bwd;
int data;

}

Where fwd and bwd represents forward and backward links to adjacent
elements of the list. Which among the following segments of code
deletes the element pointed to by X from the double linked list, if it is
assumed that X points to neither the first nor last element of the list?

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 59

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd

B. X -> bwd -> fwd = X -> bwd;
X -> fwd -> bwd = X -> fwd

C. X -> bwd -> bwd = X -> fwd;
X -> fwd -> fwd = X -> bwd

D. X -> bwd -> bwd = X -> bwd;
X -> fwd -> fwd = X -> fwd

10. Which among the following segment of code deletes the element
pointed to by X from the double linked list, if it is assumed that X
points to the first element of the list and start pointer points to
beginning of the list?

A. X -> bwd = X -> fwd;
X -> fwd = X -> bwd

B. start = X -> fwd;
start -> bwd = NULL;

C. start = X -> fwd;
X -> fwd = NULL

D. X -> bwd -> bwd = X -> bwd;
X -> fwd -> fwd = X -> fwd

11. Which among the following segment of code deletes the element
pointed to by X from the double linked list, if it is assumed that X
points to the last element of the list?
A. X -> fwd -> bwd = NULL;

B. X -> bwd -> fwd = X -> bwd;

C. X -> bwd -> fwd = NULL;

D. X -> fwd -> bwd = X -> bwd;

12. Which among the following segment of code counts the number of
elements in the double linked list, if it is assumed that X points to the
first element of the list and ctr is the variable which counts the number
of elements in the list?

A. for (ctr=1; X != NULL; ctr++)
X = X -> fwd;

B. for (ctr=1; X != NULL; ctr++)
X = X -> bwd;

C. for (ctr=1; X -> fwd != NULL; ctr++)
X = X -> fwd;

D. for (ctr=1; X -> bwd != NULL; ctr++)
X = X -> bwd;

13. Which among the following segment of code counts the number of
elements in the double linked list, if it is assumed that X points to the
last element of the list and ctr is the variable which counts the number
of elements in the list?

A. for (ctr=1; X != NULL; ctr++)
X = X -> fwd;

B. for (ctr=1; X != NULL; ctr++)
X = X -> bwd;

C. for (ctr=1; X -> fwd != NULL; ctr++)
X = X -> fwd;

D. for (ctr=1; X -> bwd != NULL; ctr++)
X = X -> bwd;

[B]

[C]

[A]

[B]

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 60

14. Which among the following segment of code inserts a new node
pointed by X to be inserted at the beginning of the double linked list.
The start pointer points to beginning of the list?

[B]

A. X -> bwd = X -> fwd;
X -> fwd = X -> bwd;

B. X -> fwd = start;
start -> bwd = X;
start = X;

C. X -> bwd = X -> fwd;
X -> fwd = X -> bwd;
start = X;

D. X -> bwd -> bwd = X -> bwd;
X -> fwd -> fwd = X -> fwd

15. Which among the following segments of inserts a new node pointed by
X to be inserted at the end of the double linked list. The start and last
pointer points to beginning and end of the list respectively?

[C]

A. X -> bwd = X -> fwd;
X -> fwd = X -> bwd

B. X -> fwd = start;
start -> bwd = X;

C. last -> fwd = X;
X -> bwd = last;

D. X -> bwd = X -> bwd;
X -> fwd = last;

16. Which among the following segments of inserts a new node pointed by
X to be inserted at any position (i.e neither first nor last) element of
the double linked list? Assume temp pointer points to the previous
position of new node.

[D]

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd

B. X -> bwd -> fwd = X -> bwd;
X -> fwd -> bwd = X -> fwd

C. temp -> fwd = X;

temp -> bwd = X -> fwd;
X ->fwd = x
X ->fwd->bwd = temp

D. X -> bwd = temp;

X -> fwd = temp -> fwd;
temp ->fwd = X;
X -> fwd -> bwd = X;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 61

17. A single linked list is declared as follows:
struct sllist
{

[A]

struct sllist *next;
int data;

}
Where next represents links to adjacent elements of the list.

Which among the following segments of code deletes the element
pointed to by X from the single linked list, if it is assumed that X
points to neither the first nor last element of the list? prev pointer
points to previous element.

A. prev -> next = X -> next;
free(X);

B. X -> next = prev-> next;
free(X);

C. prev -> next = X -> next;
free(prev);

D. X -> next = prev -> next;
free(prev);

18. Which among the following segment of code deletes the element
pointed to by X from the single linked list, if it is assumed that X
points to the first element of the list and start pointer points to
beginning of the list?

[B]

A. X = start -> next;
free(X);

B. start = X -> next;
free(X);

C. start = start -> next;
free(start);

D. X = X -> next;
start = X;
free(start);

19. Which among the following segment of code deletes the element
pointed to by X from the single linked list, if it is assumed that X
points to the last element of the list and prev pointer points to last but
one element?

[C]

A. prev -> next = NULL;
free(prev);

B. X -> next = NULL;
free(X);

C. prev -> next = NULL;
free(X);

D X -> next = prev;
free(prev);

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 62

20. Which among the following segment of code counts the number of
elements in the single linked list, if it is assumed that X points to the
first element of the list and ctr is the variable which counts the number
of elements in the list?

[A]

A. for (ctr=1; X != NULL; ctr++)
X = X -> next;

B. for (ctr=1; X != NULL; ctr--)
X = X -> next;

C. for (ctr=1; X -> next != NULL; ctr++)
X = X -> next;

D. for (ctr=1; X -> next != NULL; ctr--)
X = X -> next;

21. Which among the following segment of code inserts a new node
pointed by X to be inserted at the beginning of the single linked list.
The start pointer points to beginning of the list?

[B]

A. start -> next = X;
X = start;

B. X -> next = start;
start = X

C. X -> next = start -> next;
start = X

D. X -> next = start;
start = X -> next

22. Which among the following segments of inserts a new node pointed by
X to be inserted at the end of the single linked list. The start and last
pointer points to beginning and end of the list respectively?

[C]

A. last -> next = X;
X -> next = start;

B. X -> next = last;
last ->next = NULL;

C. last -> next = X;
X -> next = NULL;

D. last -> next = X -> next;
X -> next = NULL;

23. Which among the following segments of inserts a new node pointed by
X to be inserted at any position (i.e neither first nor last) element of
the single linked list? Assume prev pointer points to the previous
position of new node.

[D]

A. X -> next = prev -> next;
prev -> next = X -> next;

B. X = prev -> next;

prev -> next = X -> next;

C. X -> next = prev;
prev -> next = X;

D. X -> next = prev -> next;
prev -> next = X;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 63

24. A circular double linked list is declared as follows:
struct cdllist
{

[A]

struct cdllist *fwd, *bwd;
int data;

}

Where fwd and bwd represents forward and backward links to adjacent
elements of the list.

Which among the following segments of code deletes the element
pointed to by X from the circular double linked list, if it is assumed
that X points to neither the first nor last element of the list?

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd;

B. X -> bwd -> fwd = X -> bwd;
X -> fwd -> bwd = X -> fwd;

C. X -> bwd -> bwd = X -> fwd;
X -> fwd -> fwd = X -> bwd;

D. X -> bwd -> bwd = X -> bwd;
X -> fwd -> fwd = X -> fwd;

25. Which among the following segment of code deletes the element
pointed to by X from the circular double linked list, if it is assumed
that X points to the first element of the list and start pointer points to
beginning of the list?

[D]

A. start = start -> bwd;

X -> bwd -> bwd = start;
start -> bwd = X -> bwd;

B. start = start -> fwd;

X -> fwd -> fwd = start;
start -> bwd = X -> fwd

C. start = start -> bwd;
X -> bwd -> fwd = X;
start -> bwd = X -> bwd

D. start = start -> fwd;

X -> bwd -> fwd = start;
start -> bwd = X -> bwd;

26. Which among the following segment of code deletes the element
pointed to by X from the circular double linked list, if it is assumed
that X points to the last element of the list and start pointer points to
beginning of the list?

[B]

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> fwd= X -> bwd;

B. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd;

C. X -> fwd -> fwd = X -> bwd;
X -> fwd -> bwd= X -> fwd;

D. X -> bwd -> bwd = X -> fwd;
X -> bwd -> bwd = X -> bwd;

Lecture Notes: M. ANANTHA LAKSMI

Dept. of CSE, RCEW 64

27. Which among the following segment of code counts the number of
elements in the circular double linked list, if it is assumed that X and
start points to the first element of the list and ctr is the variable which
counts the number of elements in the list?

A. for (ctr=1; X->fwd != start; ctr++)
X = X -> fwd;

B. for (ctr=1; X != NULL; ctr++)
X = X -> bwd;

C. for (ctr=1; X -> fwd != NULL; ctr++)
X = X -> fwd;

D. for (ctr=1; X -> bwd != NULL; ctr++)
X = X -> bwd;

28. Which among the following segment of code inserts a new node
pointed by X to be inserted at the beginning of the circular double
linked list. The start pointer points to beginning of the list?

[A]

[B]

A. X -> bwd = start;

X -> fwd = start -> fwd;
start -> bwd-> fwd = X;
start -> bwd = X;
start = X

B. X -> bwd = start -> bwd;
X -> fwd = start;

start -> bwd-> fwd = X;
start -> bwd = X;
start = X

C. X -> fwd = start -> bwd;

X -> bwd = start;

start -> bwd-> fwd = X;
start -> bwd = X;

start = X

D. X -> bwd = start -> bwd;
X -> fwd = start;

start -> fwd-> fwd = X;
start -> fwd = X;

X = start;

29. Which among the following segment of code inserts a new node
pointed by X to be inserted at the end of the circular double linked list.
The start pointer points to beginning of the list?

[C]

A. X -> bwd = start;

X -> fwd = start -> fwd;
start -> bwd -> fwd = X;
start -> bwd = X;

start = X

B. X -> bwd = start -> bwd;
X -> fwd = start;

start -> bwd -> fwd = X;
start -> bwd = X;
start = X

C. X -> bwd= start -> bwd;
X-> fwd = start;

start -> bwd -> fwd = X;
start -> bwd = X;

D. X -> bwd = start -> bwd;
X -> fwd = start;

start -> fwd-> fwd = X;
start -> fwd = X;

X = start;

30. Which among the following segments of inserts a new node pointed by
X to be inserted at any position (i.e neither first nor last) element of
the circular double linked list? Assume temp pointer points to the
previous position of new node.

[D]

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd;

B. X -> bwd -> fwd = X -> bwd;
X -> fwd -> bwd = X -> fwd;

C. temp -> fwd = X;

temp -> bwd = X -> fwd;
X -> fwd = X;
X -> fwd -> bwd = temp;

D. X -> bwd = temp;

X -> fwd = temp -> fwd;
temp -> fwd = X;
X -> fwd -> bwd = X;

	1.1. Introduction to Data Structures:
	Algorithm + Data structure = Program
	1.2. Data structures: Organization of data
	Contiguous structures:
	Non-contiguous structures:
	Hybrid structures:
	1.3. Abstract Data Type (ADT):
	1.4. Selecting a data structure to match the operation:
	1.5. Algorithm
	1.6. Practical Algorithm design issues:
	1.7. Performance of a program:
	Time Complexity:
	Space Complexity:
	1.8. Classification of Algorithms
	1.9. Complexity of Algorithms
	1.10. Rate of Growth
	Some Examples:
	1.11. Analyzing Algorithms
	Numerical Comparison of Different Algorithms
	Graph of log n, n, n log n, n2, n3, 2n, n! and nn
	Exercises
	1. is a step-by-step recipe for solving an instance of problem. [A]
	3.1. Linked List Concepts:
	Advantages of linked lists:
	Disadvantages of linked lists:
	3.2. Types of Linked Lists:
	Comparison between array and linked list:
	3.3. Single Linked List:
	Implementation of Single Linked List:
	The basic operations in a single linked list are:
	Creating a node for Single Linked List:
	Creating a Singly Linked List with ‘n’ number of nodes:
	Insertion of a Node:
	Inserting a node at the beginning:
	Inserting a node at the end:
	Inserting a node at intermediate position:
	Deletion of a node:
	Deleting a node at the beginning:
	Deleting a node at the end:
	Deleting a node at Intermediate position:
	Traversal and displaying a list (Left to Right):
	Counting the Number of Nodes:
	3.3.1. Source Code for the Implementation of Single Linked List:
	3.4. Using a header node:
	3.5. Array based linked lists:
	3.6. Double Linked List:
	Creating a node for Double Linked List:
	Creating a Double Linked List with ‘n’ number of nodes:
	Inserting a node at the beginning:
	Inserting a node at the end:
	Inserting a node at an intermediate position:
	Deleting a node at the beginning:
	Deleting a node at the end:
	Deleting a node at Intermediate position:
	Traversal and displaying a list (Left to Right):
	Traversal and displaying a list (Right to Left):
	Counting the Number of Nodes:
	3.5. A Complete Source Code for the Implementation of Double Linked List:
	3.7. Circular Single Linked List:
	Creating a circular single Linked List with ‘n’ number of nodes:
	Inserting a node at the beginning:
	Inserting a node at the end:
	Deleting a node at the beginning:
	Deleting a node at the end:
	Traversing a circular single linked list from left to right:
	3.7.1. Source Code for Circular Single Linked List:
	3.8. Circular Double Linked List:
	Creating a Circular Double Linked List with ‘n’ number of nodes:
	Inserting a node at the beginning:
	Inserting a node at the end:
	Inserting a node at an intermediate position:
	Deleting a node at the beginning:
	Deleting a node at the end:
	Deleting a node at Intermediate position:
	Traversing a circular double linked list from left to right:
	Traversing a circular double linked list from right to left:
	3.8.1. Source Code for Circular Double Linked List:
	3.9. Comparison of Linked List Variations:
	3.10. Polynomials:
	3.10.1. Source code for polynomial creation with help of linked list:
	3.10.2. Addition of Polynomials:
	3.10.3. Source code for polynomial addition with help of linked list:
	Multiple Choice Questions

