Code: 15A54201

B.Tech I Year II Semester (R15) Regular & Supplementary Examinations May/June 2017

MATHEMATICS – II

(Common to all)

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - Find $L[t^2, e^t, cos4t]$ (a)
 - Define unit step function Laplace transform.
 - If $f(x) = x^4$ in (-1, 1) then find the Fourier coefficient of b_n . (c)
 - What is Fourier even function $(-\pi,\pi)$?
 - Write the Fourier sine transform of f(t).
 - (f) Find the value of $Z(a^n \cos nt)$
 - Find the general solution of $u_{xx} = xy$. (g)
 - Find the Z-transform of the sequence $\{x(n)\}$ where x(n) is $n.2^n$
 - Find $z^{-1}\left(\frac{1}{z-3}\right)$. (i)
 - What do you mean by steady state and transient state?

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

[UNIT - I]

- (a) Apply convolution theorem for $L^{-1}\left(\frac{1}{s^3(s^2+1)}\right)$. (b) Evaluate $L\left(e^{-1}\int_0^t \frac{\sin t}{t}\ dt\right)$.

Solve $\frac{d^2x}{dt^2} + 9x = \cos 2t$, if x(0) = 1, $x(\frac{\pi}{2}) = -1$. 3

UNIT – II

Find the Fourier series expansion of $f(x) = 2x - x^2$ in (0, 3) and hence deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{3^2} - \frac$ 4 $\cdots \infty = \frac{\pi}{12}$

Obtain half range cosine series for $f(x) = \begin{cases} kx & \text{if } 0 \le x \le \frac{l}{2} \\ k(l-x), \frac{l}{2} \le x \le l \end{cases}$. Deduce the sum of the series $\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} + \frac{1$ 5 ...∞

(UNIT – III)

- 6 (a) Find the Fourier sine transform of $e^{-|x|}$.
 - Write the conditions of Parseval's identity for Fourier transforms.

Verify convolution theorem for $f(x) = g(x) = e^{-x^2}$. (UNIT – IV) 7

- (a) Form the partial differential equation $z = f\left(\frac{xy}{2}\right)$ by eliminating the arbitrary function. 8
 - (b) Use the method of separation of variables, solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ where $u(x, 0) = 8e^{-3y}$.

9 Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions u(0,y) = u(i,y) = u(x,0) = 0 and $u(x,a) = \sin\left(\frac{n\pi x}{l}\right)$.

UNIT – V

- (a) Find the z-transformation of $\sin n\theta$. 10
 - (b) If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, evaluate U_2, U_3 using initial value theorem.

Solve the differential equation $u_{n+2} - 2u_{n+1} + u_n = 3n + 5$ using z-transforms. 11