
1

Unit 1

Introduction to Android
Syllabus: The Android 4.1 jelly Bean SDK, Understanding the Android Software Stack, installing the Android

SDK, Creating Android Virtual Devices, Creating the First Android Project, Using the Text view Control,

Using the Android Emulator, The Android Debug Bridge(ADB), Launching Android Applications on a

Handset.

INTRODUCTION

Android is a mobile operating system developed by Google, based on a modified version of the Linux

kernel and other open source software and designed primarily for touchscreen mobile devices such as

smartphones and tablets. In addition, Google has further developed Android TV for televisions, Android Auto

for cars, and Wear OS for wrist watches, each with a specialized user interface. Variants of Android are also

used on game consoles, digital cameras, PCs and other electronics.

The Android Operating System is a Linux-based OS developed by the Open Handset Alliance (OHA).

The Android OS was originally created by Android, Inc., which was bought by Google in 2005. Google teamed

up with other companies to form the Open Handset Alliance (OHA), which has become responsible for the

continued development of the Android OS.

The android is a powerful operating system and it supports large number of applications in Smartphones.

These applications are more comfortable and advanced for the users. The hardware that supports android

software is based on ARM architecture platform. The android is an open source operating system means that it’s

free and any one can use it. The android has got millions of apps available that can help you managing your life

one or other way and it is available low cost in market at that reasons android is very popular.

Each time the OHA releases an Android version, it names the release after a dessert. Android 1.5 is known as

Cupcake, 1.6 as Donut, 2.0/2.1 as Eclair, 2.2 as Froyo and 2.3 is dubbed Gingerbread. Once a version is

released, so is its source code.

The Android OS is designed for phones. The important features of android are given below:

1) It is open-source.

2) Anyone can customize the Android Platform.

3) There are a lot of mobile applications that can be chosen by the consumer.

4) It provides many interesting features like weather details, opening screen, live RSS (Really Simple

Syndication) feeds etc.

It provides support for messaging services(SMS and MMS), web browser, storage (SQLite), connectivity

(GSM, CDMA, Blue Tooth, Wi-Fi etc.), media, handset layout etc.

Software developers who want to create applications for the Android OS can download the Android Software

Development Kit (SDK) for a specific version. The SDK includes a debugger, libraries, an emulator, some

documentation, sample code and tutorials. For faster development, interested parties can use graphical

integrated development environments (IDEs) such as Eclipse to write applications in Java.

Android Emulator:

The Emulator is a new application in android operating system. The emulator is a new prototype that is used to

develop and test android applications without using any physical device.

https://en.wikipedia.org/wiki/Mobile_operating_system
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Touchscreen
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Android_TV
https://en.wikipedia.org/wiki/Android_Auto
https://en.wikipedia.org/wiki/Wear_OS
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Personal_computer

2

The android emulator has all of the hardware and software features like mobile device except phone calls. It

provides a variety of navigation and control keys. It also provides a screen to display your application. The

emulators utilize the android virtual device configurations. Once your application is running on it, it can use

services of the android platform to help other applications, access the network, play audio, video, store and

retrieve the data.

Android versions

Google did not attach any high-calorie code name to its initial versions 1.0 and 1.1 of the Android Operating

System. The code names of android ranges from A to N currently, such as Aestro, Blender, Cupcake, Donut,

Eclair, Froyo, Gingerbread, Honeycomb, Ice Cream Sandwitch, Jelly Bean, KitKat, Lollipop and Marshmallow.

Let's understand the android history in a sequence.

https://www.elprocus.com/wp-content/uploads/2013/10/Android-Emulator.png

3

THE ANDROID 4.1 JELLY BEAN SDK

The Android 4.1 Jelly Bean SDK was released with new features for developers in July 2012. It improves the

beauty and simplicity of Android 4.0 and is a major platform release that adds a variety of new features for

users and app developers. A few of the big features of this release include the following:

• Project Butter—Makes the Jelly Bean UI faster and more responsive. Also CPU Touch Responsiveness is

added, which increases CPU performance whenever the screen is touched. It uses the finger’s speed and

direction to predict where it will be located after some milliseconds, hence making the navigation faster.

• Faster speech recognition—Speech recognition is now faster and doesn’t require any network to convert

voice into text. That is, users can dictate to the device without an Internet connection.

• Improved notification system— The notifications include pictures and lists along with text. Notifications can

be expanded or collapsed through a variety of gestures, and users can block notifications if desired. The

notifications also include action buttons that enable users to call directly from the notification menu rather

replying to email.

• Supports new languages—Jelly Bean includes support for several languages including Arabic, Hebrew,

Hindi, and Thai. It also supports bidirectional text.

• Predictive keyboard—On the basis of the current context, the next word of the message is automatically

predicted.

• Auto-arranging Home screen—Icons and widgets automatically resize and realign as per the existing space.

• Helpful for visually impaired users—The Gesture Mode combined with voice helps visually impaired users

to easily navigate the user interface.

• Improved Camera app—The Jelly Bean Camera app includes a new review mode of the captured photos.

Users can swipe in from the right of the screen to quickly view the captured photos. Also, users can pinch to

switch to a new film strip view, where they can swipe to delete photos.

• Better communication in Jelly Bean—Two devices can communicate with Near Field Communication

(NFC); that is, two NFC-enabled Android devices can be tapped to share data. Also, Android devices can be

paired to Bluetooth devices that support the Simple Secure Pairing standard by just tapping them together.

• Improved Google Voice search—Jelly Bean is equipped with a question and answer search method that

helps in solving users’ queries similar to Apple’s popular Siri.

• Face Unlock—Unlocks the device when the user looks at it. It also prevents the screen from blacking out.

Optionally “blink” can be used to confirm that a live person is unlocking the device instead of a photo.

• Google Now—Provides users “just the right information at just the right time.” It displays cards to show

desired information automatically. For example, the Places card displays nearby restaurants and shops while

moving; the Transit card displays information on the next train or bus when the user is near a bus stop or

railway station; the Sports card displays live scores or upcoming game events; the Weather card displays the

weather conditions at a user’s current location, and so on.

• Google Play Widgets—Provides quick and easy access to movies, games, magazines, and other media on the

device. It also suggests new purchases on Google Play.

• Faster Google Search—Google Search can be opened quickly, from the lock screen and from the system bar

by swiping up and also by tapping a hardware search key if it is available on the device.

• Supports antipiracy—This feature supports developers in the sense that the applications are encrypted with a

device-specific key making it difficult to copy and upload them to the Internet.

4

UNDERSTANDING THE ANDROID SOFTWARE STACK

The Android operating system is built on top of a modified Linux kernel. The software stack contains Java

applications running on top of a virtual machine. Components of the system are written in Java, C, C++, and

XML. Android operating system is a stack of software components which is roughly divided into five sections

1) Linux kernel

2) Native libraries (middleware),

3) Android Runtime

4) Application Framework

5) Applications

1) Linux kernel

It is the heart of android architecture that exists at the root of android architecture. Linux kernel is responsible

for device drivers, power management, memory management, device management and resource access. This

layer is the foundation of the Android Platform.

➢ Contains all low level drivers for various hardware components support.

➢ Android Runtime relies on Linux Kernel for core system services like,

➢ Memory, process management, threading etc.

➢ Network stack

➢ Driver model

➢ Security and more.

2) Libraries

On top of Linux kernel there is a set of libraries including open-source Web browser engine WebKit,

well known library libc, SQLite database which is a useful repository for storage and sharing of

application data, libraries to play and record audio and video, SSL libraries responsible for Internet

security etc.

5

➢ SQLite Library used for data storage and light in terms of mobile memory footprints and task

execution.

➢ WebKit Library mainly provides Web Browsing engine and a lot more related features.

➢ The surface manager library is responsible for rendering windows and drawing surfaces of various

apps on the screen.

➢ The media framework library provides media codecs for audio and video.

➢ The OpenGl (Open Graphics Library) and SGL(Scalable Graphics Library) are the graphics

libraries for 3D and 2D rendering, respectively.

➢ The FreeType Library is used for rendering fonts.

3) Android Runtime

In android runtime, there are core libraries and DVM (Dalvik Virtual Machine) which is responsible to

run android application. DVM is like JVM but it is optimized for mobile devices. It consumes less

memory and provides fast performance. The Dalvik VM makes use of Linux core features like memory

management and multi-threading, which is intrinsic in the Java language. The Dalvik VM enables every

Android application to run in its own process, with its own instance of the Dalvik virtual machine.

4) Android Framework

On the top of Native libraries and android runtime, there is android framework. Android framework

includes Android API's such as UI (User Interface), telephony, resources, locations, Content Providers

(data) and package managers. It provides a lot of classes and interfaces for android application

development.

• Activity Manager: manages the life cycle of an applications and maintains the back stack as well so

that the applications running on different processes has smooth navigations.

• Package Manager: keeps track of which applications are installed in your device.

• Dalvik is a specialized virtual machine designed specifically

for Android and optimized for battery-powered mobile

devices with limited memory and CPU.

• Android apps execute on Dalvik VM, a “clean-room”

implementation of JVM

• Dalvik optimized for efficient execution

• Dalvik: register-based VM, unlike Oracle’s stack-based

JVM

• Java .class bytecode translated to Dalvik EXecutable (DEX)

bytecode, which Dalvik interprets

6

• Window Manager : Manages windows which are java programming abstractions on top of lower level

surfaces provided by surface manager.

• Telephony Managers: manages the API which is use to build the phone applications

• Content Providers: Provide feature where one application can share the data with another application.

like phone number , address, etc

• View Manager : Buttons , Edit text , all the building blocks of UI, event dispatching etc.

5) Applications

• On the top of android framework, there are applications. All applications such as home, contact, settings,

games, browsers are using android framework that uses android runtime and libraries. Android runtime

and native libraries are using linux kernel. Any applications that you write are located at this layer.

INSTALLING THE ANDROID SDK

For developing native Android applications that you can publish on the Google Play marketplace, you need to

install the following four applications:

• The Java Development Kit (JDK) can be downloaded from

http://oracle.com/technetwork/java/javase/downloads/index.html.

• The Eclipse IDE can be downloaded from http://www.eclipse.org/downloads/.

• The Android Platform SDK Starter Package can be download

from http://developer.android.com/sdk/index.html.

• The Android Development Tools (ADT) Plug-in can be downloaded from

 http://developer.android.com/sdk/eclipse-adt.html. The plug-in contains project templates and Eclipse tools that

help in creating and managing Android projects.

The Android SDK is not a full development environment and includes only the core SDK Tools, which are used

to download the rest of the SDK components. This means that after installing the Android SDK Tools, you need

to install Android platform tools and the other components required for developing Android applications. Go

to http://developer.android.com/sdk/index.html and download the package by selecting the link for your

operating system.

The first screen is a Welcome screen. Select the Next button to move to the next screen. Because the Android

SDK requires the Java SE Development Kit for its operation, it checks for the presence of JDK on your

computer.

If Java is already installed on your computer before beginning with Android SDK installation, the wizard

detects its presence and displays the version number of the JDK found on the machine, as shown in Figure.

http://oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/index.html

7

Figure Dialog box informing you that the JDK is already installed on the computer

Select the Next button. You get a dialog box asking you to choose the users for which Android SDK is being

installed. The following two options are displayed in the dialog box:

• Install for anyone using this computer

• Install just for me

Select the Install for anyone using this computer option and click Next. The next dialog prompts you for the

location to install the Android SDK Tools, as shown in below Figure . The dialog also displays the default

directory location for installing Android SDK Tools as C:\Program Files (x86)\Android\android-sdk, which you

can change by selecting the Browse button. Keep the default directory for installing Android SDK Tools

unchanged; then select the Next button to continue.

The next dialog box asks you to specify the Start Menu folder where you want the program’s shortcuts to

appear, as shown.

https://www.safaribooksonline.com/library/view/Android%E2%84%A2+Programming+Unleashed/9780133151732/ch01.html#ch01fig05

8

Figure: Dialog box to select the Start menu shortcut folder

A default folder name appears called Android SDK Tools. If you do not want to make a Start Menu folder,

select the Do not create shortcuts check box. Let’s create the Start Menu folder by keeping the default folder

name and selecting the Install button to begin the installation of the Android SDK Tools. After all the files have

been downloaded and installed on the computer, select the Next button. The next dialog box tells you that

the Android SDK Tools Setup Wizard is complete and the Android SDK Tools have successfully installed on

the computer. Select Finish to exit the wizard, as shown in Figure

Figure: Successful installation of the Android SDK Tools dialog box

Note that the check box Start SDK Manager (to download system images) is checked by default. It means that

after the Finish button is clicked, the Android SDK Manager, one of the tools in the Android SDK Tools

package, will be launched. Android SDK is installed in two phases. The first phase is the installation of the

SDK, which installs the Android SDK Tools, and the second phase is installation of the Android platforms and

other components.

https://www.safaribooksonline.com/library/view/Android%E2%84%A2+Programming+Unleashed/9780133151732/ch01.html#ch01fig07

9

An Android application is a combination of several small components that include Java files, XML resource

and layout files, manifest files, and much more. It would be very time-consuming to create all these components

manually. So, you can use the following applications to help you:

• Eclipse IDE—An IDE that makes the task of creating Java applications easy. It provides a complete platform

for developing Java applications with compiling, debugging, and testing support.

• Android Development Tools (ADT) plug-in—A plug-in that’s added to the Eclipse IDE and automatically

creates the necessary Android files so you can concentrate on the process of application development.

Before you begin the installation of Eclipse IDE, first set the path of the JDK that you installed, as it will be

required for compiling the applications. To set the JDK path on Windows, right-click on My Computer and

select the Properties option. From the System Properties dialog box that appears, select the Advanced tab,

followed by the Environment Variables button. A dialog box, Environment Variables, pops up. In the System

variables section, double-click on the Path variable. Add the full path of the JDK (C:\Program

Files\Java\jdk1.7.0_04\bin\java.exe) to the path variable and select OK to close the windows.

CREATING ANDROID VIRTUAL DEVICES

An Android Virtual Device (AVD) represents a device configuration. There are many Android devices,

each with different configuration. To test whether the Android application is compatible with a set of Android

devices, you can create AVDs that represent their configuration. For example, you can create an AVD that

represents an Android device running version 4.1 of the SDK with a 64MB SD card. After creating AVDs, you

point the emulator to each one when developing and testing the application. AVDs are the easiest way of testing

the application with various configurations.

To create AVDs in Eclipse, select the Window, AVD Manager option. An Android Virtual Device

Manager dialog opens, as shown in Figure. The dialog box displays a list of existing AVDs, letting you create

new AVDs and manage existing AVDs. Because you haven’t yet defined an AVD, an empty list is displayed.

Figure: The AVD Manager dialog

Select the New button to define a new AVD. A Create new Android Virtual Device (AVD)dialog box, appears

The fields are as follows:

• Name—Used to specify the name of the AVD.

• Target—Used to specify the target API level. Our application will be tested against the specified API level.

• CPU/ABI—Determines the processor that we want to emulate on our device.

https://www.safaribooksonline.com/library/view/Android%E2%84%A2+Programming+Unleashed/9780133151732/ch01.html#ch01fig19

10

• SD Card—Used for extending the storage capacity of the device. Large data files such as audio and video for

which the built-in flash memory is insufficient are stored on the SD card.

• Snapshot—Enable this option to avoid booting of the emulator and start it from the last saved snapshot.

Hence, this option is used to start the Android emulator quickly.

• Skin—Used for setting the screen size. Each built-in skin represents a specific screen size. You can try

multiple skins to see if your application works across different devices.

• Hardware—Used to set properties representing various optional hardware that may be present in the target

device.

In the AVD, set the Name of the AVD to demoAVD, choose Android 4.1—API Level 16 for the Target, set SD

Card to 64 MiB, and leave the Default (WVGA800) for Skin.

In the Hardware section, three properties are already set for you depending on the selected target.

The Abstracted LCD density is set to 240; the Max VM application heap size is set to 48, and the Device RAM

size is set to 512.

You can select these properties and edit their values, delete them, and add new properties by selecting

the New button. New properties can include Abstracted LCD density, DPad support, Accelerometer, Maximum

horizontal camera pixels, Cache partition size, Audio playback support, and Track-ball support, among others.

Finally, select the Create AVD button (see Figure 1.20—right) to see how to create the virtual device

called demoAVD.

You now have everything ready for developing Android applications—the Android SDK, the Android platform,

the Eclipse IDE, the ADT plug-in, and an AVD for testing Android applications. You can now create your first

Android application.

Creating the First Android Project
Now let’s go over how to set up your first project so all you’ll have left to do is write! you'll start a new

Android Studio project and get to know the project workspace, including the project editor that you'll use to

code the app.

Step 1: Setup Eclipse IDE

Install the latest version of Eclipse. After successful installation, it should display a window like this:

Note

You learn about the API and its different levels in Chapter 2, “Basic Widgets.” The new AVD, demoAVD, is

created and displayed in the list of existing AVDs.

Note

The larger the allocated SD Card space, the longer it takes to create the AVD. Unless it is really required,

keep the SD Card space as low as possible. I would recommend keeping this small, like 64MiB.

https://www.safaribooksonline.com/library/view/Android%E2%84%A2+Programming+Unleashed/9780133151732/ch01.html#ch01fig20
http://www.eclipse.org/downloads/
https://www.safaribooksonline.com/library/view/Android%E2%84%A2+Programming+Unleashed/9780133151732/ch02.html#ch02
https://www.safaribooksonline.com/library/view/Android%E2%84%A2+Programming+Unleashed/9780133151732/ch02.html#ch02

11

Step 2: Setup Android Development Tools (ADT) Plugin

Here you will learn to install the Android Development Tool plugin for Eclipse. To do this, you have to click on

Help > Software Updates > Install New Software. This will display the following dialogue box.

Just click on the Add button as shown in the picture and add https://dl-ssl.google.com/android/eclipse/ as the

location. When you press OK, Eclipse will start to search for the required plug-in and finally it will list the

found plug-ins.

http://developer.android.com/tools/sdk/eclipse-adt.html

12

Step 3: Configuring the ADT plugin

After the installing ADT plugin, now tell the eclipse IDE for your android SDK location. To do so:

1. Select the Window menu > preferences

2. Now select the android from the left panel. Here you may see a dialog box asking if you want to send

the statistics to the google. Click proceed.

3. Click on the browse button and locate your SDK directory e.g. my SDK location is C:\Program

Files\Android\android-sdk .

4. Click the apply button then OK.

Step 4: Create Android Virtual Device

The last step is to create Android Virtual Device, which you will use to test your Android applications. To do

this, open Eclipse and Launch Android AVD Manager from options Window > AVD Manager and click on

New which will create a successful Android Virtual Device. Use the screenshot below to enter the correct

values.

You have successfully created Android Application Development environment. You are now ready to create a

simple android app.

https://eclipse.org/

13

USING THE TEXTVIEW CONTROL

In android ui or input controls are the interactive or View components which are used to design the user

interface of an application. In android we have a wide variety of UI or input controls available, those are

TextView, EditText, Buttons, Checkbox, Progressbar, Spinners, etc.

In android, TextView is a user interface control which is used to set and display the text to the user

based on our requirements. The TextView control will act as like label control and it won’t allow users to edit

the text. A good example of TextView control usage would be to display textual labels for other controls, like

"Enter a Date:", "Enter a Name:" or "Enter a Password:".

 In android, we can create a TextView control in two ways either in XML layout file or create it in

Activity file programmatically.

Specific attributes of TextView controls you will want to be aware of:

• Give the TextView control a unique name using the id property.

• Set the text displayed within the TextView control using the text property; programmatically set with the

setText() method.

• Set the layout height and layout width properties of the control as appropriate.

• Set any other attributes you desire to adjust the control’s appearance. For example, adjust the text size,

color, font or other style settings.

• By default, text contents of a TextView control are left-aligned. However, you can position the text

using the gravity attribute. This setting positions your text relative to the control’s overall width and

height and only really makes sense to use if there is whitespace within the TextView control.

• In XML, this property would appear within your TextView control as:

android:gravity="center"

• By default, the background of a TextView control is transparent. That is, whatever is behind the control

is shown. However, you can set the background of a control explicitly, to a color resource, or a drawable

(picture). In XML, this property would appear within your TextView control as:

• android:background="#0000ff"

• By default, any text contents within a TextView control is displayed as plain text. However, by setting

one simple attribute called autoLink, all you can enable automatic detection of web, email, phone and

address information within the text. In XML, this property would appear within your TextView control

as:

• You can control the color of the text within the TextView control by using the textColor attribute. This

attribute can be set to a color resource, or a specific color by hex value. In XML, this property would

appear within your TextView control as:

• android:textColor="#ff0000"

• You can control the style of the text (bold, italic) and font family (sans, serif, monospace) within the

TextView control by using the textStyle and typeface attributes. In XML, these properties would appear

within your TextView control as:

android:textStyle="bold"

android:typeface="monospace"

Example:

android:autoLink="all"

https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-button-with-examples
https://www.tutlane.com/tutorial/android/android-checkbox-with-examples
https://www.tutlane.com/tutorial/android/android-progressbar-with-examples
https://www.tutlane.com/tutorial/android/android-spinner-dropdown-list-with-examples
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

14

<TextView

 android:id="@+id/message"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 tools:context=".HelloWorldAppActivity"

 android:typeface="serif"

 android:textColor="#0F0"

 android:textSize="25dp"

 android:textStyle="italic"

 android:gravity="center_horizontal" />

This code makes the text of the TextView control appear in serif font, green color, 25dp size, italic, and at the

horizontal center of the container

USING THE ANDROID EMULATOR
The Android emulator is used for testing and debugging applications before they are loaded onto a real handset.

Android emulator is typically used for deploying apps that are developed in your IDE without actually installing

it in a device. Android emulators such as Bluestacks can run android apps where in which emulators like AVD

and genymotion are used to emulate an entire operating system. The Android emulator is integrated into Eclipse

through the ADT plug-in.

Limitations of the Android Emulator

The Android emulator is useful to test Android applications for compatibility with devices of different

configurations. But still, it is a piece of software and not an actual device and has several limitations:

• Emulators no doubt help in knowing how an application may operate within a given environment, but they

still don’t provide the actual environment to an application. For example, an actual device has memory,

CPU, or other physical limitations that an emulator doesn’t reveal.

15

• Emulators just simulate certain handset behavior. Features such as GPS, sensors, battery, power settings,

and network connectivity can be easily simulated on a computer.

• SMS messages are also simulated and do not use a real network.

• Phone calls cannot be placed or received but are simulated.

• No support for device-attached headphones is available.

• Peripherals such as camera/video capture are not fully functional.

• No USB or Bluetooth support is available.

The emulator provides some facilities too. You can use the mouse and keyboard to interact with the emulator

when it is running. For example, you can use your computer mouse to click, scroll, and drag items on the

emulator. You can also use it to simulate finger touch on the soft keyboard or a physical emulator keyboard.

You can use your computer keyboard to input text into UI controls and to execute specific emulator commands.

Some of the most commonly used commands are

• Back [ESC button]

• Call [F3]

• End [F4]

• Volume Up [KEYPAD_PLUS, Ctrl-5]

• Volume down [KEYPAD_MINUS, Ctrl-F6]

• Switching orientations [KEYPAD_7, Ctrl-F11/KEYPAD_9, Ctrl-F12]

You can also interact with an emulator from within the DDMS tool. Eclipse IDE provides three perspectives to

work with: Java perspective, Debug perspective, and DDMS perspective. The Java perspective is the default

and the one with which you have been working up to now. You can switch between perspectives by choosing

the appropriate icon in the top-right corner of the Eclipse environment. The three perspectives are as follows:

• The Java perspective—It’s the default perspective in Eclipse where you spend most of the time. It shows the

panes where you can write code and navigate around the project.

• The Debug perspective—Enables application debugging. You can set breakpoints; step through the code;

view LogCat logging information, threads, and so on.

• The Dalvik Debug Monitor Service (DDMS) perspective—Enables you to monitor and manipulate

emulator and device status. It also provides screen capture and simulates incoming phone calls, SMS sending,

and GPS coordinates. To manage content in the device or emulator, you can use the ADB (Android Debug

Bridge).

THE ANDROID DEBUG BRIDGE(ADB)

The Android-Debug-Bridge (abbreviated as adb) is a software-interface for the android system, which can be

used to connect an android device with a computer using an USB cable or a wireless connection. It can be used

to execute commands on the phone or transfer data between the device and the computer.[1]

The tool is part of the Android SDK (Android Software Development Kit) and is located in the

subdirectory platform-tools. In previous versions of the SDK it was located in the subdirectory tools.

The Android Debug Bridge is a software interface between the device and the local computer, which allows the

direct communication of both components. This includes the possibility to transfer files from one component to

the other one, as well as executing commands from the computer on the connected device. The ADB can be

https://en.droidwiki.org/wiki/Android
https://en.droidwiki.org/wiki/Android_Debug_Bridge#cite_note-1
https://en.droidwiki.org/w/index.php?title=Android_SDK&action=edit&redlink=1

16

used through a command line windows, terminal/shell in Linux-based systems, a command line (cmd) for

Windows. The main advantage is to execute commands on the phone directly out of the computer, without any

direct user interaction to the phone, which makes especially debugging a lot easier.

It is a client-server program that includes three components:

• A client, which sends commands. The client runs on your development machine. You can invoke a

client from a command-line terminal by issuing an adb command.

• A daemon (adbd), which runs commands on a device. The daemon runs as a background process on

each device.

• A server, which manages communication between the client and the daemon. The server runs as a

background process on your development machine.

When you start an adb client, the client first checks whether there is an adb server process already running.

If there isn't, it starts the server process. When the server starts, it binds to local TCP port 5037 and listens for

commands sent from adb clients—all adb clients use port 5037 to communicate with the adb server.

The server then sets up connections to all running devices. It locates emulators by scanning odd-numbered

ports in the range 5555 to 5585, the range used by the first 16 emulators. Where the server finds an adb daemon

(adbd), it sets up a connection to that port. Note that each emulator uses a pair of sequential ports — an even-

numbered port for console connections and an odd-numbered port for adb connections.

Once the server has set up connections to all devices, you can use adb commands to access those devices.

Because the server manages connections to devices and handles commands from multiple adb clients, you can

control any device from any client

Launching Android Applications on a Handset

To load an application onto a real handset, you need to plug a handset into your computer, using the USB data

cable. You first confirm whether the configurations for debugging your application are correct and then launch

the application as described here:

1. In Eclipse, choose the Run, Debug Configurations option.

2. Select the configuration HelloWorldApp_configuration, which you created for the HelloWorldApp

application.

3. Select the Target tab, set the Deployment Target Selection Mode to Manual. The Manual option allows

us to choose the device or AVD to connect to when using this launch configuration.

4. Apply the changes to the configuration file by clicking the Apply button.

5. Plug an Android device into your computer, using a USB cable.

6. Select Run, Debug in Eclipse or press the F11 key. A dialog box appears, showing all available configurations

for running and debugging your application. The physical device(s) connected to the computer are also listed.

Double-click the running Android device. Eclipse now installs the Android application on the handset, attaches

a debugger, and runs the application.

